File size: 15,354 Bytes
af20b53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
{
    "policy_class": {
        ":type:": "<class 'abc.ABCMeta'>",
        ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
        "__module__": "stable_baselines3.common.policies",
        "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ",
        "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb0d2e8fd30>",
        "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb0d2e8fdc0>",
        "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb0d2e8fe50>",
        "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb0d2e8fee0>",
        "_build": "<function ActorCriticPolicy._build at 0x7fb0d2e8ff70>",
        "forward": "<function ActorCriticPolicy.forward at 0x7fb0d2e91040>",
        "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb0d2e910d0>",
        "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb0d2e91160>",
        "_predict": "<function ActorCriticPolicy._predict at 0x7fb0d2e911f0>",
        "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb0d2e91280>",
        "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb0d2e91310>",
        "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb0d2e913a0>",
        "__abstractmethods__": "frozenset()",
        "_abc_impl": "<_abc._abc_data object at 0x7fb0d2e90f40>"
    },
    "verbose": 1,
    "policy_kwargs": {},
    "observation_space": {
        ":type:": "<class 'gym.spaces.box.Box'>",
        ":serialized:": "gAWViwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/2w9JwdYx4sGUaApLBoWUjAFDlHSUUpSMBGhpZ2iUaBIolhgAAAAAAAAAAACAPwAAgD8AAIA/AACAP9sPSUHWMeJBlGgKSwaFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWBgAAAAAAAAABAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYGAAAAAAAAAAEBAQEBAZRoIUsGhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
        "dtype": "float32",
        "_shape": [
            6
        ],
        "low": "[ -1.        -1.        -1.        -1.       -12.566371 -28.274334]",
        "high": "[ 1.        1.        1.        1.       12.566371 28.274334]",
        "bounded_below": "[ True  True  True  True  True  True]",
        "bounded_above": "[ True  True  True  True  True  True]",
        "_np_random": null
    },
    "action_space": {
        ":type:": "<class 'gym.spaces.discrete.Discrete'>",
        ":serialized:": "gAWVUgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lGgQjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAdNVDE5OTM3lIwFc3RhdGWUfZQojANrZXmUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAmMAnU0lImIh5RSlChLA2gNTk5OSv////9K/////0sAdJRiTXAChZSMAUOUdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
        "n": 3,
        "_shape": [],
        "dtype": "int64",
        "_np_random": "RandomState(MT19937)"
    },
    "n_envs": 1,
    "num_timesteps": 100352,
    "_total_timesteps": 100000,
    "_num_timesteps_at_start": 0,
    "seed": 0,
    "action_noise": null,
    "start_time": 1670945159256849687,
    "learning_rate": 0.001,
    "tensorboard_log": "runs/Acrobot-v1__trpo__1496881724__1670945156/Acrobot-v1",
    "lr_schedule": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
    },
    "_last_obs": null,
    "_last_episode_starts": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVdQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYCAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlC4="
    },
    "_last_original_obs": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVpQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYwAAAAAAAAAAnhfz/xzPs8Xyt/P/fWpD0vuoO9z4qXu9D/fz+/VB27B75/P4m9Nz3mdNg8ckTHPJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAksGhpSMAUOUdJRSlC4="
    },
    "_episode_num": 0,
    "use_sde": false,
    "sde_sample_freq": -1,
    "_current_progress_remaining": -0.0035199999999999676,
    "ep_info_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFMAAAAAAACMAWyUS02MAXSUR0BPhrMC9ytFdX2UKGgGR8BWwAAAAAAAaAdLXGgIR0BPi6+vhZQpdX2UKGgGR8BTAAAAAAAAaAdLTWgIR0BPkPLPldTpdX2UKGgGR8BUwAAAAAAAaAdLVGgIR0BPlt47ihnKdX2UKGgGR8BTwAAAAAAAaAdLUGgIR0BPm4rJ8v25dX2UKGgGR8BUgAAAAAAAaAdLU2gIR0BPxWqDK5kLdX2UKGgGR8BVAAAAAAAAaAdLVWgIR0BPymFSKm8/dX2UKGgGR8BSwAAAAAAAaAdLTGgIR0BPz4r8R+SbdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0BP1ABcRlH0dX2UKGgGR8BSwAAAAAAAaAdLTGgIR0BP2bTMJQchdX2UKGgGR8BUwAAAAAAAaAdLVGgIR0BP3z9CNS62dX2UKGgGR8BTQAAAAAAAaAdLTmgIR0BP5BJAdGRWdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0BP7nc+JP69dX2UKGgGR8BdAAAAAAAAaAdLdWgIR0BP7sTnJT2ndX2UKGgGR8BSAAAAAAAAaAdLSWgIR0BP+CJ40Mw2dX2UKGgGR8BSQAAAAAAAaAdLSmgIR0BP+JItlI3BdX2UKGgGR8BQAAAAAAAAaAdLQWgIR0BQAF1r6+FldX2UKGgGR8BQwAAAAAAAaAdLRGgIR0BQAMwpON5udX2UKGgGR8BUAAAAAAAAaAdLUWgIR0BQBcXaakRBdX2UKGgGR8BWgAAAAAAAaAdLW2gIR0BQBuZTho/SdX2UKGgGR8BTAAAAAAAAaAdLTWgIR0BQCvAbhm5EdX2UKGgGR8BTAAAAAAAAaAdLTWgIR0BQEA3gk1MudX2UKGgGR8BioAAAAAAAaAdLlmgIR0BQEOGbkOqedX2UKGgGR8BUQAAAAAAAaAdLUmgIR0BQFYi1RceKdX2UKGgGR8BWQAAAAAAAaAdLWmgIR0BQFuTvAoG6dX2UKGgGR8BTwAAAAAAAaAdLUGgIR0BQGt+1Bt1qdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0BQHBlUZNwjdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0BQH8dPtUn5dX2UKGgGR8BXgAAAAAAAaAdLX2gIR0BQIoHHFPzndX2UKGgGR8BWwAAAAAAAaAdLXGgIR0BQN9K7I1cddX2UKGgGR8BTAAAAAAAAaAdLTWgIR0BQOZHNHH3ldX2UKGgGR8BSAAAAAAAAaAdLSWgIR0BQPMCDEm6YdX2UKGgGR8BVwAAAAAAAaAdLWGgIR0BQP2yLQ5WBdX2UKGgGR8BRgAAAAAAAaAdLR2gIR0BQQXj6vaDgdX2UKGgGR8BRQAAAAAAAaAdLRmgIR0BQRBTS9du6dX2UKGgGR8BTwAAAAAAAaAdLUGgIR0BQRtYfW+XadX2UKGgGR8BPAAAAAAAAaAdLP2gIR0BQSFCw8nuzdX2UKGgGR8BVAAAAAAAAaAdLVWgIR0BQTIXsPatcdX2UKGgGR8BVwAAAAAAAaAdLWGgIR0BQTjYEnssydX2UKGgGR8BSgAAAAAAAaAdLS2gIR0BQUYcBEKE4dX2UKGgGR8BUAAAAAAAAaAdLUWgIR0BQU6kyk9EDdX2UKGgGR8BXgAAAAAAAaAdLX2gIR0BQV+clPacqdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0BQWIlhPTG6dX2UKGgGR8BaAAAAAAAAaAdLaWgIR0BQXuTA31jBdX2UKGgGR8BXwAAAAAAAaAdLYGgIR0BQXuyJKraNdX2UKGgGR8BWAAAAAAAAaAdLWWgIR0BQZONxVAAydX2UKGgGR8BWwAAAAAAAaAdLXGgIR0BQZQ79ycTbdX2UKGgGR8BRgAAAAAAAaAdLR2gIR0BQaZqubI91dX2UKGgGR8BUQAAAAAAAaAdLUmgIR0BQaoK+i8FqdX2UKGgGR8BPgAAAAAAAaAdLQGgIR0BQbd8eCCjDdX2UKGgGR8BSwAAAAAAAaAdLTGgIR0BQb41UEPlNdX2UKGgGR8BUQAAAAAAAaAdLUmgIR0BQc1Hz6JqJdX2UKGgGR8BSwAAAAAAAaAdLTGgIR0BQdKBI4EOidX2UKGgGR8BVwAAAAAAAaAdLWGgIR0BQeTL4etCBdX2UKGgGR8BXwAAAAAAAaAdLYGgIR0BQewWWQfZFdX2UKGgGR8BRgAAAAAAAaAdLR2gIR0BQj6K508vFdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0BQkYU8FINFdX2UKGgGR8BQwAAAAAAAaAdLRGgIR0BQlC8an753dX2UKGgGR8BcQAAAAAAAaAdLcmgIR0BQmSeEqUeNdX2UKGgGR8BTwAAAAAAAaAdLUGgIR0BQmYexOclPdX2UKGgGR8BTgAAAAAAAaAdLT2gIR0BQnsspXp4bdX2UKGgGR8BVgAAAAAAAaAdLV2gIR0BQnvfKp1ifdX2UKGgGR8BTgAAAAAAAaAdLT2gIR0BQo7GBFuvVdX2UKGgGR8BXgAAAAAAAaAdLX2gIR0BQpNLg4wRHdX2UKGgGR8BTwAAAAAAAaAdLUGgIR0BQqIre67NCdX2UKGgGR8BUAAAAAAAAaAdLUWgIR0BQrWluWKMvdX2UKGgGR8BRgAAAAAAAaAdLR2gIR0BQsbJW/8EWdX2UKGgGR8BvIAAAAAAAaAdL+mgIR0BQs+otL+PzdX2UKGgGR8BWwAAAAAAAaAdLXGgIR0BQt0K7ZnL8dX2UKGgGR8BUwAAAAAAAaAdLVGgIR0BQuPKEFnqWdX2UKGgGR8BYAAAAAAAAaAdLYWgIR0BQvQ1ivxH5dX2UKGgGR8BVQAAAAAAAaAdLVmgIR0BQvhMN+b3HdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0BQwbsjVx0ddX2UKGgGR8BRAAAAAAAAaAdLRWgIR0BQwj2FnIyTdX2UKGgGR8BUQAAAAAAAaAdLUmgIR0BQxqhHskY5dX2UKGgGR8BcQAAAAAAAaAdLcmgIR0BQyRwhnrY5dX2UKGgGR8BYwAAAAAAAaAdLZGgIR0BQzLE9+w1SdX2UKGgGR8BPAAAAAAAAaAdLP2gIR0BQ3nGCI1tPdX2UKGgGR8BTgAAAAAAAaAdLT2gIR0BQ43531SOzdX2UKGgGR8BWgAAAAAAAaAdLW2gIR0BQ5IgFHJ9zdX2UKGgGR8BOgAAAAAAAaAdLPmgIR0BQ56NuLrHEdX2UKGgGR8BXQAAAAAAAaAdLXmgIR0BQ6tbor4FidX2UKGgGR8BVAAAAAAAAaAdLVWgIR0BQ7Vb/wRXfdX2UKGgGR8BVwAAAAAAAaAdLWGgIR0BQ8LnkkrwwdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0BQ8psoDxLCdX2UKGgGR8BWwAAAAAAAaAdLXGgIR0BQ9ubmU4aQdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0BQ98kY4yXVdX2UKGgGR8BVgAAAAAAAaAdLV2gIR0BQ/KiTMaCMdX2UKGgGR8BTwAAAAAAAaAdLUGgIR0BQ/RkRSP2gdX2UKGgGR8BUwAAAAAAAaAdLVGgIR0BRAkCmuTzNdX2UKGgGR8BTwAAAAAAAaAdLUGgIR0BRAmtITXardX2UKGgGR8BPgAAAAAAAaAdLQGgIR0BRBouXeFcqdX2UKGgGR8BRgAAAAAAAaAdLR2gIR0BRBysOoYNzdX2UKGgGR8BWAAAAAAAAaAdLWWgIR0BRDHfVI7NjdX2UKGgGR8BWQAAAAAAAaAdLWmgIR0BRDTcVQAMldX2UKGgGR8BWQAAAAAAAaAdLWmgIR0BREn1zySV4dX2UKGgGR8BTQAAAAAAAaAdLTmgIR0BRLULDye7MdX2UKGgGR8BlYAAAAAAAaAdLrGgIR0BRLjwhGH58dX2UKGgGR8BWAAAAAAAAaAdLWWgIR0BRMzJ+2E00dX2UKGgGR8BTgAAAAAAAaAdLT2gIR0BRM33ta6jGdWUu"
    },
    "ep_success_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
    },
    "_n_updates": 49,
    "n_steps": 1024,
    "gamma": 0.99,
    "gae_lambda": 0.95,
    "ent_coef": 0.0,
    "vf_coef": 0.0,
    "max_grad_norm": 0.0,
    "normalize_advantage": true,
    "batch_size": 128,
    "cg_max_steps": 15,
    "cg_damping": 0.1,
    "line_search_shrinking_factor": 0.8,
    "line_search_max_iter": 10,
    "target_kl": 0.01,
    "n_critic_updates": 10,
    "sub_sampling_factor": 1
}