File size: 17,874 Bytes
1040bd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
{
    "policy_class": {
        ":type:": "<class 'abc.ABCMeta'>",
        ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMCVNBQ1BvbGljeZSTlC4=",
        "__module__": "stable_baselines3.sac.policies",
        "__doc__": "\n    Policy class (with both actor and critic) for SAC.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    :param n_critics: Number of critic networks to create.\n    :param share_features_extractor: Whether to share or not the features extractor\n        between the actor and the critic (this saves computation time)\n    ",
        "__init__": "<function SACPolicy.__init__ at 0x7fdc5fd92ca0>",
        "_build": "<function SACPolicy._build at 0x7fdc5fd92d30>",
        "_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at 0x7fdc5fd92dc0>",
        "reset_noise": "<function SACPolicy.reset_noise at 0x7fdc5fd92e50>",
        "make_actor": "<function SACPolicy.make_actor at 0x7fdc5fd92ee0>",
        "make_critic": "<function SACPolicy.make_critic at 0x7fdc5fd92f70>",
        "forward": "<function SACPolicy.forward at 0x7fdc5fd9a040>",
        "_predict": "<function SACPolicy._predict at 0x7fdc5fd9a0d0>",
        "set_training_mode": "<function SACPolicy.set_training_mode at 0x7fdc5fd9a160>",
        "__abstractmethods__": "frozenset()",
        "_abc_impl": "<_abc._abc_data object at 0x7fdc603cdfc0>"
    },
    "verbose": 1,
    "policy_kwargs": {
        "log_std_init": -3.67,
        "net_arch": [
            64,
            64
        ],
        "use_sde": true
    },
    "observation_space": {
        ":type:": "<class 'gym.spaces.box.Box'>",
        ":serialized:": "gAWVYwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAACamZm/KVyPvZRoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAACamRk/KVyPPZRoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
        "dtype": "float32",
        "_shape": [
            2
        ],
        "low": "[-1.2  -0.07]",
        "high": "[0.6  0.07]",
        "bounded_below": "[ True  True]",
        "bounded_above": "[ True  True]",
        "_np_random": null
    },
    "action_space": {
        ":type:": "<class 'gym.spaces.box.Box'>",
        ":serialized:": "gAWVBAwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAAAAIC/lGgKSwGFlIwBQ5R0lFKUjARoaWdolGgSKJYEAAAAAAAAAAAAgD+UaApLAYWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYBAAAAAAAAAAGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAYWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYBAAAAAAAAAAGUaCFLAYWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUaC2MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMB01UMTk5MzeUjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
        "dtype": "float32",
        "_shape": [
            1
        ],
        "low": "[-1.]",
        "high": "[1.]",
        "bounded_below": "[ True]",
        "bounded_above": "[ True]",
        "_np_random": "RandomState(MT19937)"
    },
    "n_envs": 1,
    "num_timesteps": 50016,
    "_total_timesteps": 50000,
    "_num_timesteps_at_start": 0,
    "seed": 0,
    "action_noise": null,
    "start_time": 1671733073573371710,
    "learning_rate": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
    },
    "tensorboard_log": null,
    "lr_schedule": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
    },
    "_last_obs": null,
    "_last_episode_starts": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
    },
    "_last_original_obs": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAFc27b5+Q3C7lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwKGlIwBQ5R0lFKULg=="
    },
    "_episode_num": 431,
    "use_sde": true,
    "sde_sample_freq": -1,
    "_current_progress_remaining": -0.000320000000000098,
    "ep_info_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFckYEnssxyMAWyUS2aMAXSUR0B09mjesPrfdX2UKGgGR0BXS5zDGcWkaAdLVGgIR0B0/zscABDHdX2UKGgGR0BXUOIyj59FaAdLU2gIR0B1C/a/RE4OdX2UKGgGR0BXzP/R3NcGaAdLSmgIR0B1FKrZJ04jdX2UKGgGR0BXveoP07KaaAdLVWgIR0B1IYt16mfodX2UKGgGR0BXf+3lS0jUaAdLSGgIR0B1KlC8e0XxdX2UKGgGR0BXaad1+y7gaAdLVWgIR0B1Nvz+WGATdX2UKGgGR0BXlW1hLGrCaAdLS2gIR0B1P6YUnG83dX2UKGgGR0BXTx+BpYcOaAdLWWgIR0B1TFm4AjptdX2UKGgGR0BXo5gPVd5ZaAdLYGgIR0B1WRwBHTZydX2UKGgGR0BXNsqjJuEVaAdLaWgIR0B1Zfd30PH1dX2UKGgGR0BXgkKE384xaAdLT2gIR0B1cpgDzRQadX2UKGgGR0BXNYOpbUw0aAdLaGgIR0B1f4TIvJzUdX2UKGgGR0BXOtQXQ+lkaAdLaWgIR0B1jG99MK1HdX2UKGgGR0BXNUJrtVrAaAdLaWgIR0B1nTNt65XmdX2UKGgGR0BXOewosqaxaAdLdWgIR0B1qi4YrJ8wdX2UKGgGR0BXNW6Gxlg/aAdLYGgIR0B1tuiGnGbTdX2UKGgGR0BXuK9f1HvuaAdLT2gIR0B1w3e0ojOcdX2UKGgGR0BXCbutwJgLaAdLZmgIR0B10ElWwNb1dX2UKGgGR0BW8sCcPOIJaAdLbWgIR0B13UUqQRwqdX2UKGgGR0BXI28h9srNaAdLamgIR0B17ggRsdkrdX2UKGgGR0BXRSVjZtelaAdLd2gIR0B1+w1zhgmadX2UKGgGR0BXIkaMrEtNaAdLeGgIR0B2C/lxOtW/dX2UKGgGR0BXO5QLux8laAdLa2gIR0B2GN5nlGPQdX2UKGgGR0BW/GkBS1mbaAdLamgIR0B2KaNxVAAydX2UKGgGR0BXE1NpM6BAaAdLZ2gIR0B2NnWOIZZTdX2UKGgGR0BXQXx8UmD2aAdLbGgIR0B2Q1Uo8ZDRdX2UKGgGR0BXQ5kXk5p8aAdLbmgIR0B2VB93KSxJdX2UKGgGR0BXfY5cTrVwaAdLSGgIR0B2XL17IDHPdX2UKGgGR0BW94Kc/dIoaAdLbWgIR0B2aa3lS0jUdX2UKGgGR0BXHotL+PzWaAdLZmgIR0B2enRLK3d9dX2UKGgGR0BXhABxPwd9aAdLSGgIR0B2gxJbt7a7dX2UKGgGR0BXgzOC5EtvaAdLVmgIR0B2j8N/e+EidX2UKGgGR0BXnG4uscQzaAdLTGgIR0B2mHAN5MURdX2UKGgGR0BXqEipvP1MaAdLSmgIR0B2oSj/MnqndX2UKGgGR0BXIe32EkB0aAdLaGgIR0B2rii0v4/NdX2UKGgGR0BXEyn5zo2XaAdLaGgIR0B2vwysS00FdX2UKGgGR0BXioDLbHp9aAdLV2gIR0B2x+8wpON6dX2UKGgGR0BXEKhg3LmqaAdLZmgIR0B22NGpda+wdX2UKGgGR0BXljWTX8O1aAdLSWgIR0B24XfwZwXJdX2UKGgGR0BXGsl1KXfJaAdLa2gIR0B27lkvsZ5zdX2UKGgGR0BW/1psXSBtaAdLaWgIR0B2/xfjS5RTdX2UKGgGR0BXCQggX/HYaAdLZGgIR0B3C/003wTedX2UKGgGR0BXD2oFV1fWaAdLY2gIR0B3GOk2xY7rdX2UKGgGR0BW+eIuXeFdaAdLXmgIR0B3Jb1Fpfx+dX2UKGgGR0BXiNd7fHghaAdLS2gIR0B3Lm2qkuYhdX2UKGgGR0BXUR5cC5mRaAdLcWgIR0B3P1jriVB2dX2UKGgGR0BXne49X9zfaAdLTGgIR0B3R//T9bX6dX2UKGgGR0BXG9NJvo/zaAdLYmgIR0B3VM9QoCuEdX2UKGgGR0BXqpsbedkKaAdLSGgIR0B3XXzshPj5dX2UKGgGR0BXdXHWBjFyaAdLW2gIR0B3akFgUlAvdX2UKGgGR0BXwSMxXXAeaAdLS2gIR0B3cukN4JNTdX2UKGgGR0BXnsPe54GEaAdLbWgIR0B3g8QvpQk5dX2UKGgGR0BXFGcOLBKuaAdLX2gIR0B3kI4//vORdX2UKGgGR0BXoPDDTBqLaAdLR2gIR0B3mStp22XtdX2UKGgGR0BXNao60Y0maAdLcmgIR0B3qhY8uBczdX2UKGgGR0BXnOEEkjX4aAdLTWgIR0B3ss2R7qptdX2UKGgGR0BW8nLmp2lmaAdLgGgIR0B3w+8CgbqAdX2UKGgGR0BXm0K/mDDkaAdLVmgIR0B30JzmwJPZdX2UKGgGR0BXRcVHnU2DaAdLa2gIR0B33YKmbb1zdX2UKGgGR0BXLKc/dIoWaAdLY2gIR0B36lOUMXrMdX2UKGgGR0BXoF41P3zuaAdLTGgIR0B38v8KohpydX2UKGgGR0BXeWKAJ9iMaAdLZmgIR0B4A8PZqVQidX2UKGgGR0BXqCMcZLqVaAdLTmgIR0B4DHTqjaf0dX2UKGgGR0BXHQZbY9PlaAdLYWgIR0B4GVLDhtLtdX2UKGgGR0BXXDv/io87aAdLaWgIR0B4JkUi6g/UdX2UKGgGR0BW+CwbEP1+aAdLaGgIR0B4NyH9FWn1dX2UKGgGR0BW1Q6dUbT+aAdLcWgIR0B4RC8mKIi1dX2UKGgGR0BXZ93KSxJNaAdLTmgIR0B4UNO45Lh8dX2UKGgGR0BW8dhRZU1iaAdLb2gIR0B4XepvP1L8dX2UKGgGR0BXb4KQaJhwaAdLbWgIR0B4bukzoEB9dX2UKGgGR0BW6uOCGvfTaAdLZGgIR0B4e904iosJdX2UKGgGR0BXsoeYD1XeaAdLTWgIR0B4hJ9x6v7ndX2UKGgGR0BW4S0WuX/paAdLfmgIR0B4lcWznieedX2UKGgGR0BW/HXRPXTWaAdLbmgIR0B4oryXlbNbdX2UKGgGR0BWyXeN1hb4aAdLcWgIR0B4s4/SpiqidX2UKGgGR0BXgxgNPP9laAdLcGgIR0B4wI7fYSQHdX2UKGgGR0BW4tNJvo/zaAdLb2gIR0B40X17IDHPdX2UKGgGR0BXJUDU3GXHaAdLZWgIR0B43mXPZ7HAdX2UKGgGR0BXaLRSgoPTaAdLWGgIR0B46zFqBVdYdX2UKGgGR0BXEqqCHymRaAdLaGgIR0B4+CBqbjLkdX2UKGgGR0BW2VtbcGkfaAdLcGgIR0B5CRFd9lVcdX2UKGgGR0BXIx9oexOdaAdLbWgIR0B5FgqYqoZRdX2UKGgGR0BXLhGMGX5WaAdLXWgIR0B5ItoBaLXMdX2UKGgGR0BXknavicXnaAdLUGgIR0B5K5UbT+efdX2UKGgGR0BWu87lq8DkaAdLmWgIR0B5QOYKIBRydX2UKGgGR0BXAHO8kD6naAdLdGgIR0B5Ud9Ujs2OdX2UKGgGR0BXG9ZRsMy8aAdLZmgIR0B5XsSlFc6edX2UKGgGR0BXJeLR8c+8aAdLW2gIR0B5a4pH7P6bdX2UKGgGR0BXmHAuZkTYaAdLRWgIR0B5dCZNO/L1dX2UKGgGR0BW2igf2bobaAdLgmgIR0B5hUP+XJHRdX2UKGgGR0BW1NKdxyXEaAdLlGgIR0B5ms7yQPqcdX2UKGgGR0BXm7qt5le4aAdLRmgIR0B5o3KNhmXgdX2UKGgGR0BXxRjawljWaAdLS2gIR0B5rB9y925hdX2UKGgGR0BXS41DSgGsaAdLfGgIR0B5vS5byH2zdX2UKGgGR0BXuLgflp49aAdLR2gIR0B5xc1FYuCgdX2UKGgGR0BW6MMZxaPkaAdLamgIR0B51qe4Cp3pdX2UKGgGR0BW0n2dupCKaAdLqWgIR0B57CvPkaMrdX2UKGgGR0BXAkvsZ5zHaAdLkGgIR0B5/XW07bL2dX2UKGgGR0BXHwUtZmqYaAdLkmgIR0B6EsFSsKb8dWUu"
    },
    "ep_success_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
    },
    "_n_updates": 50016,
    "buffer_size": 1,
    "batch_size": 512,
    "learning_starts": 0,
    "tau": 0.01,
    "gamma": 0.9999,
    "gradient_steps": 32,
    "optimize_memory_usage": false,
    "replay_buffer_class": {
        ":type:": "<class 'abc.ABCMeta'>",
        ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
        "__module__": "stable_baselines3.common.buffers",
        "__doc__": "\n    Replay buffer used in off-policy algorithms like SAC/TD3.\n\n    :param buffer_size: Max number of element in the buffer\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param device: PyTorch device\n    :param n_envs: Number of parallel environments\n    :param optimize_memory_usage: Enable a memory efficient variant\n        of the replay buffer which reduces by almost a factor two the memory used,\n        at a cost of more complexity.\n        See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n        and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n        Cannot be used in combination with handle_timeout_termination.\n    :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n        separately and treat the task as infinite horizon task.\n        https://github.com/DLR-RM/stable-baselines3/issues/284\n    ",
        "__init__": "<function ReplayBuffer.__init__ at 0x7fdc5fdea430>",
        "add": "<function ReplayBuffer.add at 0x7fdc5fdea4c0>",
        "sample": "<function ReplayBuffer.sample at 0x7fdc5fdea550>",
        "_get_samples": "<function ReplayBuffer._get_samples at 0x7fdc5fdea5e0>",
        "__abstractmethods__": "frozenset()",
        "_abc_impl": "<_abc._abc_data object at 0x7fdc5fde1a80>"
    },
    "replay_buffer_kwargs": {},
    "train_freq": {
        ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
        ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLIGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
    },
    "use_sde_at_warmup": false,
    "target_entropy": -1.0,
    "log_ent_coef": null,
    "ent_coef": 0.1,
    "target_update_interval": 1,
    "ent_coef_optimizer": null,
    "batch_norm_stats": [],
    "batch_norm_stats_target": []
}