metadata
license: cc-by-sa-4.0
metrics:
- accuracy
pipeline_tag: text-generation
tags:
- code
- mlx
- mlx-my-repo
base_model: defog/llama-3-sqlcoder-8b
qdtomassi/llama-3-sqlcoder-8b-mlx-4Bit
The Model qdtomassi/llama-3-sqlcoder-8b-mlx-4Bit was converted to MLX format from defog/llama-3-sqlcoder-8b using mlx-lm version 0.22.3.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("qdtomassi/llama-3-sqlcoder-8b-mlx-4Bit")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)