MARTZAI: LoRA Adapter for LLaMA 70B
MARTZAI is a LoRA fine-tuned adapter for LLaMA 70B, trained on Chris Martz's tweets to capture his unique style and insights.
Model Details
- Base model: meta-llama/Meta-Llama-3-70B-Instruct
- Method: LoRA (Low-Rank Adaptation)
- Framework: PEFT
- Language: English
- License: [More Information Needed]
Quick Start
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
# Load base model
base_model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-70B-Instruct")
# Load LoRA adapter
lora_model = PeftModel.from_pretrained(base_model, "your_hf_username/llama70b-lora-adapter")
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-70B-Instruct")
# Generate text
input_text = "What are Chris Martz's views on inflation?"
inputs = tokenizer(input_text, return_tensors="pt")
outputs = lora_model.generate(**inputs)
print(tokenizer.decode(outputs[0]))
## Notes
Usage: Ideal for tasks requiring Chris Martz’s tone or expertise.
Limitations: This adapter inherits biases and constraints from the base model.
Developed by sw4geth. Contact via Hugging Face for questions or feedback.
- Downloads last month
- 3
Model tree for puremood/llama70b-MARTZ
Base model
meta-llama/Meta-Llama-3-70B
Finetuned
meta-llama/Meta-Llama-3-70B-Instruct