Edit model card

dark-bert-finetuned-ner

This model is a fine-tuned version of bert-base-cased on the conll2003 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0639
  • Precision: 0.9283
  • Recall: 0.9478
  • F1: 0.9380
  • Accuracy: 0.9859

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0881 1.0 1756 0.0716 0.9172 0.9322 0.9246 0.9817
0.0375 2.0 3512 0.0610 0.9275 0.9455 0.9364 0.9857
0.0207 3.0 5268 0.0639 0.9283 0.9478 0.9380 0.9859

Framework versions

  • Transformers 4.22.1
  • Pytorch 1.10.0
  • Datasets 2.5.1
  • Tokenizers 0.12.1
Downloads last month
15

Dataset used to train pulkitkumar13/dark-bert-finetuned-ner

Spaces using pulkitkumar13/dark-bert-finetuned-ner 2

Evaluation results