claude tokenizer: mlm

A variant of Xenova/claude-tokenizer with some small changes to support usage as an MLM tokenizer.

from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('pszemraj/claude-tokenizer-mlm')

text = "Hello, this is a test input."
ids = tokenizer(text)
print(tokenizer.decode(ids['input_ids'], skip_special_tokens=False))
# <bos>Hello, this is a test input.<EOT>
len(tokenizer)
# 65004

details relevant for model configs using this:

>>> tokenizer
GPT2TokenizerFast(name_or_path='pszemraj/claude-tokenizer-mlm', vocab_size=65000, model_max_length=200000, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'bos_token': '<bos>', 'eos_token': '<EOT>', 'unk_token': '<EOT>', 'sep_token': '<EOT>', 'pad_token': '<pad>', 'cls_token': '<bos>', 'mask_token': '<mask>'}, clean_up_tokenization_spaces=True),  added_tokens_decoder={
        0: AddedToken("<EOT>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
        1: AddedToken("<META>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
        2: AddedToken("<META_START>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
        3: AddedToken("<META_END>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
        4: AddedToken("<SOS>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
        65000: AddedToken("<pad>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
        65001: AddedToken("<CLS>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
        65002: AddedToken("<bos>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
        65003: AddedToken("<mask>", rstrip=False, lstrip=True, single_word=False, normalized=True, special=True),
}

the <CLS> token is added but unused, both the CLS and BOS tokens are set to <bos> - see tokenizer_config.json for details

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.