File size: 8,427 Bytes
9f80eba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
---
language: ca
datasets:
- projecte-aina/whisper-large-v3-ca-3catparla
tags:
- audio
- automatic-speech-recognition
- catalan
- whisper-large-v3
- projecte-aina
- barcelona-supercomputing-center
- bsc
license: apache-2.0
model-index:
- name: whisper-large-v3-ca-3catparla
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: 3CatParla (Test)
type: projecte-aina/3catparla_asr
split: test
args:
language: ca
metrics:
- name: WER
type: wer
value: 0.96
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: 3CatParla (Dev)
type: projecte-aina/3catparla_asr
split: dev
args:
language: ca
metrics:
- name: WER
type: wer
value: 0.92
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Mozilla Common Voice 17.0 (Test)
type: mozilla-foundation/common_voice_17_0
split: test
args:
language: ca
metrics:
- name: WER
type: wer
value: 10.32
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Mozilla Common Voice 17.0 (Dev)
type: mozilla-foundation/common_voice_17_0
split: validation
args:
language: ca
metrics:
- name: WER
type: wer
value: 9.26
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice Benchmark Catalan Accents
type: projecte-aina/commonvoice_benchmark_catalan_accents
split: Balearic female
args:
language: ca
metrics:
- name: WER
type: wer
value: 12.25
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice Benchmark Catalan Accents
type: projecte-aina/commonvoice_benchmark_catalan_accents
split: Balearic male
args:
language: ca
metrics:
- name: WER
type: wer
value: 12.18
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice Benchmark Catalan Accents
type: projecte-aina/commonvoice_benchmark_catalan_accents
split: Central female
args:
language: ca
metrics:
- name: WER
type: wer
value: 8.51
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice Benchmark Catalan Accents
type: projecte-aina/commonvoice_benchmark_catalan_accents
split: Central male
args:
language: ca
metrics:
- name: WER
type: wer
value: 8.73
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice Benchmark Catalan Accents
type: projecte-aina/commonvoice_benchmark_catalan_accents
split: Northern female
args:
language: ca
metrics:
- name: WER
type: wer
value: 8.09
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice Benchmark Catalan Accents
type: projecte-aina/commonvoice_benchmark_catalan_accents
split: Northern male
args:
language: ca
metrics:
- name: WER
type: wer
value: 8.28
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice Benchmark Catalan Accents
type: projecte-aina/commonvoice_benchmark_catalan_accents
split: Northwestern female
args:
language: ca
metrics:
- name: WER
type: wer
value: 7.88
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice Benchmark Catalan Accents
type: projecte-aina/commonvoice_benchmark_catalan_accents
split: Northwestern male
args:
language: ca
metrics:
- name: WER
type: wer
value: 8.44
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice Benchmark Catalan Accents
type: projecte-aina/commonvoice_benchmark_catalan_accents
split: Valencian female
args:
language: ca
metrics:
- name: WER
type: wer
value: 9.58
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice Benchmark Catalan Accents
type: projecte-aina/commonvoice_benchmark_catalan_accents
split: Valencian male
args:
language: ca
metrics:
- name: WER
type: wer
value: 9.10
---
# whisper-large-v3-ca-3catparla
**Paper:** [3CatParla: A New Open-Source Corpus of Broadcast TV in Catalan for Automatic Speech Recognition](https://iberspeech.tech/)
The "whisper-large-v3-ca-3catparla" is an acoustic model suitable for Automatic Speech Recognition in Catalan. It is the result of fine-tuning the model "openai/whisper-large-v3" with 710 hours of Catalan data released by the Projecte AINA (https://projecteaina.cat/) from Barcelona, Spain.
The specific dataset used to create the model is called ["3Catparla"](projecte-aina/whisper-large-v3-ca-3catparla).
The fine-tuning process was perform during July (2024) in the servers of the [Barcelona Supercomputing Center](https://www.bsc.es/) by [Carlos Daniel Hernández Mena](https://huggingface.co/carlosdanielhernandezmena).
# Evaluation
```python
import torch
from transformers import WhisperForConditionalGeneration, WhisperProcessor
#Load the processor and model.
MODEL_NAME="projecte-aina/whisper-large-v3-ca-3catparla"
processor = WhisperProcessor.from_pretrained(MODEL_NAME)
model = WhisperForConditionalGeneration.from_pretrained(MODEL_NAME).to("cuda")
#Load the dataset
from datasets import load_dataset, load_metric, Audio
ds=load_dataset("projecte-aina/whisper-large-v3-ca-3catparla",split='test')
#Downsample to 16kHz
ds = ds.cast_column("audio", Audio(sampling_rate=16_000))
#Process the dataset
def map_to_pred(batch):
audio = batch["audio"]
input_features = processor(audio["array"], sampling_rate=audio["sampling_rate"], return_tensors="pt").input_features
batch["reference"] = processor.tokenizer._normalize(batch['normalized_text'])
with torch.no_grad():
predicted_ids = model.generate(input_features.to("cuda"))[0]
transcription = processor.decode(predicted_ids)
batch["prediction"] = processor.tokenizer._normalize(transcription)
return batch
#Do the evaluation
result = ds.map(map_to_pred)
#Compute the overall WER now.
from evaluate import load
wer = load("wer")
WER=100 * wer.compute(references=result["reference"], predictions=result["prediction"])
print(WER)
```
**Test Result**: 0.96
# BibTeX entry and citation info
* When publishing results based on these models please refer to:
```bibtex
@misc{mena2024whisperlarge3catparla,
title={Acoustic Model in Catalan: whisper-large-v3-ca-3catparla.},
author={Hernandez Mena, Carlos Daniel},
organization={Barcelona Supercomputing Center},
url={https://huggingface.co/projecte-aina/whisper-large-v3-ca-3catparla},
year={2024}
}
```
# Acknowledgements
This model has been promoted and financed by the Government of Catalonia through the Aina project.
|