File size: 5,150 Bytes
64324fa
39fd427
 
 
 
64324fa
39fd427
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
574fc2d
39fd427
 
574fc2d
39fd427
574fc2d
 
39fd427
 
 
 
574fc2d
39fd427
 
 
 
 
 
 
64324fa
39fd427
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bff921f
39fd427
 
 
 
 
 
 
 
 
9d05d14
39fd427
 
4e2fd96
 
39fd427
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
---

language:
- ca

license: apache-2.0

tags:
- "catalan"
- "paraphrase"
- "text-classification"
- "multi-class-classification"
- "natural-language-understanding"
- "intent-classificaiton"


datasets:
- "AmazonScience/massive"

metrics:
- f1
    
model-index:
- name: roberta-base-ca-v2-massive
  results:
  - task: 
      name: text-classification
      type: text-classification  
    dataset:
      name: MASSIVE
      type: AmazonScience/massive
      config: ca-ES
      split: test
    metrics:
      - name: F1
        type: f1
        value: 0.8732
        
widget:

- text: "m'agraden les cançons del serrat"
- text: "quina hora és"
- text: "què hi ha de nou a les notícies"
- text: "quins errors sols fer"

---

# Catalan BERTa (roberta-large-ca-v2) finetuned for Intent Classification

## Table of Contents
<details>
<summary>Click to expand</summary>

- [Model description](#model-description)
- [Intended uses and limitations](#intended-use)
- [How to use](#how-to-use)
- [Limitations and bias](#limitations-and-bias)
- [Training](#training)
  - [Training data](#training-data)
  - [Training procedure](#training-procedure)
- [Evaluation](#evaluation)
   - [Variable and metrics](#variable-and-metrics)
   - [Evaluation results](#evaluation-results)
- [Additional information](#additional-information)
  - [Author](#author)
  - [Contact information](#contact-information)
  - [Copyright](#copyright)
  - [Licensing information](#licensing-information)
  - [Funding](#funding)
  - [Citing information](#citing-information)
  - [Disclaimer](#disclaimer)
</details>

## Model description

The **roberta-base-ca-v2-massive** is a Intent Classificaiton model for the Catalan language fine-tuned from the roberta-large-ca-v2 model, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers.

## Intended uses and limitations

The **roberta-base-ca-v2-massive** model can be used for intent prediction in plain text sentences. It can be used in combination with an Automatic Speech Recognition model in order to implement a Voice Assistant. The model is limited by its training dataset and may not generalize well for all use cases.

## How to use

Here is how to use this model:

```python
from transformers import pipeline
from pprint import pprint

nlp = pipeline("text-classification", model="projecte-aina/roberta-base-ca-v2-massive")
example = "m'agraden les cançons del serrat"

intent = nlp(example)
pprint(intent)
```

## Limitations and bias
At the time of submission, no measures have been taken to estimate the bias embedded in the model. However, we are well aware that our models may be biased since the corpora have been collected using crawling techniques on multiple web sources. We intend to conduct research in these areas in the future, and if completed, this model card will be updated.

## Training

### Training data
We used the Catalan split of the [MASSIVE](https://huggingface.co/datasets/AmazonScience/massive)  dataset for training and evaluation.

### Training procedure
The model was trained with a batch size of 16 and a learning rate of 5e-5 for 20 epochs. We then selected the best checkpoint using the downstream task metric in the corresponding development set and then evaluated it on the test set.

## Evaluation

### Variable and metrics

This model was finetuned maximizing the weighted F1 score.

### Evaluation results
We evaluated the _roberta-base-ca-v2-massive_ on the MASSIVE test set obtaining a weighted F1 score of 87.32.

## Additional information

### Author
Text Mining Unit (TeMU) at the Barcelona Supercomputing Center (bsc-temu@bsc.es)

### Contact information
For further information, send an email to aina@bsc.es

### Copyright
Copyright (c) 2022 Text Mining Unit at Barcelona Supercomputing Center 

### Licensing information
[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)

### Funding
This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina).

### Citation Information  
NA

### Disclaimer

<details>
<summary>Click to expand</summary>

The models published in this repository are intended for a generalist purpose and are available to third parties. These models may have bias and/or any other undesirable distortions.

When third parties, deploy or provide systems and/or services to other parties using any of these models (or using systems based on these models) or become users of the models, they should note that it is their responsibility to mitigate the risks arising from their use and, in any event, to comply with applicable regulations, including regulations regarding the use of Artificial Intelligence.

In no event shall the owner and creator of the models (BSC – Barcelona Supercomputing Center) be liable for any results arising from the use made by third parties of these models.