Text-to-Speech
PyTorch
ONNX
Catalan
matcha-tts
acoustic modelling
speech
multispeaker
File size: 3,692 Bytes
4522849
e3c6df5
 
 
 
 
e69747c
 
e3c6df5
2913be0
e3c6df5
 
aa55120
 
4522849
e3c6df5
b780397
e3c6df5
 
 
 
 
 
 
 
 
 
b9d9e1d
e3c6df5
 
 
 
 
 
d79d134
 
 
6a5a7ed
d79d134
 
b780397
e3c6df5
 
b9d9e1d
d79d134
 
b9d9e1d
 
d79d134
b9d9e1d
e3c6df5
7705de4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3c6df5
 
7705de4
 
e3c6df5
 
 
 
 
 
 
db09460
 
 
 
 
 
 
e3c6df5
 
 
 
 
 
 
 
 
 
 
6a5a7ed
 
 
 
 
 
 
 
 
 
 
 
 
 
e3c6df5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3573af4
e3c6df5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
---
language:
- ca
licence:
- apache-2.0
tags:
- matcha-tts
- acoustic modelling
- speech
- multispeaker
pipeline_tag: text-to-speech
datasets:
- projecte-aina/festcat_trimmed_denoised
- projecte-aina/openslr-slr69-ca-trimmed-denoised
---

# Matcha-TTS Catalan Multispeaker

## Table of Contents
<details>
<summary>Click to expand</summary>

- [Model description](#model-description)
- [Intended uses and limitations](#intended-uses-and-limitations)
- [How to use](#how-to-use)
- [Training](#training)
- [Evaluation](#evaluation)
- [Citation](#citation)
- [Additional information](#additional-information)

</details>

## Model description

**Matcha-TTS** is an encoder-decoder architecture designed for fast acoustic modelling in TTS. The encoder predicts phoneme durations and their averaged acoustic features. 
The decoder backbone is essentially a U-Net inspired by [Grad-TTS](https://arxiv.org/pdf/2105.06337.pdf) based on Transformers architecture. By replacing 2D CNNs by 1D CNNs, 
a large reduction in memory consumption and fast synthesis is achieved.

**Matcha-TTS** is a non-autorregressive model trained with optimal-transport conditional flow matching (OT-CFM). 
This yields an ODE-based decoder capable of generating high output quality in fewer synthesis steps than models trained using score matching.

## Intended uses and limitations

This model is intended to serve as an acoustic feature generator for multispeaker text-to-speech systems for the Catalan language. 
It has been finetuned using a Catalan phonemizer, therefore if the model is used for other languages it may will not produce intelligible samples after mapping 
its output into a speech waveform. 

The quality of the samples can vary depending on the speaker. 
This may be due to the sensitivity of the model in learning specific frequencies and also due to the quality of samples for each speaker.

## How to use

### Installation

```bash
pip install git+https://github.com/langtech-bsc/vocos.git@matcha
```
You need to install the Catalan phonemizer version of espeak-ng:

```bash
git clone https://github.com/projecte-aina/espeak-ng.git

export PYTHON=/path/to/env/<env_name>/bin/python
cd /path/to/espeak-ng
./autogen.sh
./configure --prefix=/path/to/espeak-ng
make
make install

pip cache purge
pip install mecab-python3
pip install unidic-lite

```

### Generate 

## Training

### Adaptation


### Training data

The model was trained on 2 Catalan speech datasets

| Dataset             | Language | Hours   |
|---------------------|----------|---------|
| Festcat             | ca       | 22      |
| OpenSLR69           | ca       | 5       |

### Languages

Data comes from two different datasets: festcat and openslr69

### Framework


## Evaluation

### Results

## Citation

If this code contributes to your research, please cite the work:

```
@misc{mehta2024matchatts,
      title={Matcha-TTS: A fast TTS architecture with conditional flow matching}, 
      author={Shivam Mehta and Ruibo Tu and Jonas Beskow and Éva Székely and Gustav Eje Henter},
      year={2024},
      eprint={2309.03199},
      archivePrefix={arXiv},
      primaryClass={eess.AS}
}
```

## Additional information

### Author
The Language Technologies Unit from Barcelona Supercomputing Center.

### Contact
For further information, please send an email to <langtech@bsc.es>.

### Copyright
Copyright(c) 2023 by Language Technologies Unit, Barcelona Supercomputing Center.

### License
[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)

### Funding
This work has been promoted and financed by the Generalitat de Catalunya through the [Aina project](https://projecteaina.cat/).
### Disclaimer