PyTorch
Chinese
Catalan
m2m_100
File size: 8,879 Bytes
2c4e078
 
bcfaaf3
 
 
 
 
 
 
2c4e078
bcfaaf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
---

license: apache-2.0
datasets:
- projecte-aina/CA-ZH_Parallel_Corpus
language:
- zh
- ca
base_model:
- facebook/m2m100_1.2B
---

## Projecte Aina’s Chinese-Catalan machine translation model

## Table of Contents
<details>
<summary>Click to expand</summary>

- [Model description](#model-description)
- [Intended uses and limitations](#intended-uses-and-limitations)
- [How to use](#how-to-use)
- [Limitations and bias](#limitations-and-bias)
- [Training](#training)
- [Evaluation](#evaluation)
- [Additional information](#additional-information)

</details>

 
## Model description

This machine translation model is built upon the foundation of M2M100 1.2B. 
It is trained on a combination of Catalan-Chinese datasets 
totalling 94.187.858 sentence pairs. 113.305 sentence pairs were parallel data collected from the web, while the remaining 94.074.553 sentence pairs 
were parallel synthetic data created using the 
[Aina Project's Spanish-Catalan machine translation model](https://huggingface.co/projecte-aina/aina-translator-es-ca) and the [Aina Project's English-Catalan machine translation model](https://huggingface.co/projecte-aina/aina-translator-en-ca). 
The model was evaluated on the Flores, NTREX, and Projecte Aina's Catalan-Chinese evaluation datasets. 

## Intended uses and limitations

You can use this model for machine translation from simplified Chinese to Catalan.

## How to use

### Usage

Translate a sentence using python
```python

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM



model_id = "projecte-aina/aina-translator-zh-ca-v2"



model = AutoModelForSeq2SeqLM.from_pretrained(model_id)

tokenizer = AutoTokenizer.from_pretrained(model_id)



sentence = "欢迎来到 Aina 项目!"



input_ids = tokenizer(sentence, return_tensors="pt").input_ids

output_ids = model.generate(input_ids, max_length=200, num_beams=5)



generated_translation= tokenizer.decode(output_ids[0], skip_special_tokens=True).strip()

print(generated_translation)

#Benvingut al projecte Aina!

```


## Limitations and bias
At the time of submission, no measures have been taken to estimate the bias and toxicity embedded in the model. 
However, we are well aware that our models may be biased. We intend to conduct research in these areas in the future, and if completed, this model card will be updated. 

## Training

### Training data

The Catalan-Chinese data collected from the web was a combination of the following datasets:

| Dataset       	| Sentences before cleaning	|
|-------------------|----------------|
| OpenSubtitles  	| 139.300	|
| WikiMatrix | 90.643 |
| Wikipedia 	| 68.623|
| **Total**     	| **298.566** |

94.074.553 sentence pairs of synthetic parallel data were created from the following Spanish-Chinese datasets and English-Chinese datasets:

**Spanish-Chinese:**

| Dataset       	| Sentences before cleaning	|
|-------------------|----------------|
| NLLB 	|24.051.233|
| UNPC | 17.599.223 |
| MultiUN | 9.847.770 |
| OpenSubtitles | 9.319.658 |
| MultiParaCrawl | 3.410.087 |
| MultiCCAligned | 3.006.694 |
| WikiMatrix | 1.214.322 |
| News Commentary | 375.982 |
| Tatoeba | 9.404 |
| **Total**     	| **68.834.373** |

**English-Chinese:**

| Dataset       	| Sentences before cleaning	|
|-------------------|----------------|
| NLLB 	|71.383.325|
| CCAligned | 15.181.415 |
| Paracrawl | 14.170.869|
| WikiMatrix | 2.595.119|
| **Total**     	| **103.330.728** |


### Training procedure

### Data preparation

The Chinese side of all datasets were first processed using the [Hanzi Identifier](https://github.com/tsroten/hanzidentifier) to detect Traditional Chinese, which was subsequently converted to Simplified Chinese using [OpenCC](https://github.com/BYVoid/OpenCC).

All data was then filtered according to two specific criteria:

- Alignment: sentence level alignments were calculated using [LaBSE](https://huggingface.co/sentence-transformers/LaBSE) and sentence pairs with a score below 0.75 were discarded.

- Language identification: the probability of being the target language was calculated using [Lingua.py](https://github.com/pemistahl/lingua-py) and sentences with a language probability score below 0.5 were discarded.

Next, Spanish data was translated into Catalan using the Aina Project's [Spanish-Catalan machine translation model](https://huggingface.co/projecte-aina/aina-translator-es-ca), while English data was translated into Catalan using the Aina Project's [English-Catalan machine translation model](https://huggingface.co/projecte-aina/aina-translator-en-ca).

The filtered and translated datasets are then concatenated and deduplicated to form a final corpus of 94.187.858.


#### Training

The training was executed on NVIDIA GPUs utilizing the Hugging Face Transformers framework. 
The model was trained for 244.500 updates. 
Weights were saved every 500 updates.

## Evaluation

### Variable and metrics

Below are the evaluation results on [Flores-200](https://github.com/facebookresearch/flores/tree/main/flores200), 
[NTREX](https://github.com/MicrosoftTranslator/NTREX), and Projecte Aina's Catalan-Chinese test sets, compared to Google Translate for the ZH-CA direction. The evaluation was conducted [`tower-eval`](https://github.com/deep-spin/tower-eval) following the standard setting (beam search with beam size 5, limiting the translation length to 200 tokens). We report the following metrics:

- BLEU: Sacrebleu implementation, version:2.4.0.
- ChrF: Sacrebleu implementation.
- Comet: Model checkpoint: "Unbabel/wmt22-comet-da".
- Comet-kiwi: Model checkpoint: "Unbabel/wmt22-cometkiwi-da".


### Evaluation results

Below are the evaluation results on the machine translation from Chinese to Catalan compared to [Google Translate](https://translate.google.com/):


#### Flores200-dev

|              |   Bleu ↑  |   ChrF ↑ |   Comet ↑ |   Comet-kiwi ↑ |
|:-----------------------|-------:|------:|-------:|--------:|-------------:|---------:|
| aina-translator-zh-ca-v2 |  26.74 |  54.49 |    **0.86** |         **0.82** |   
| Google Translate         |  **27.71**     |   **55.37**     |    **0.86**     |         0.81 |    


#### Flores200-devtest


|              |   Bleu ↑  |   ChrF ↑ |   Comet ↑ |   Comet-kiwi ↑ |
|:-----------------------|-------:|------:|-------:|--------:|-------------:|---------:|
| aina-translator-zh-ca-v2 |  27.17 |  55.02 |    **0.86** |         **0.81** |   
| Google Translate         |  **27.47**     |   **55.51**     |    **0.86**     |         **0.81** |    


#### NTREX


|              |   Bleu ↑  |   ChrF ↑ |   Comet ↑ |   Comet-kiwi ↑ |
|:-----------------------|-------:|------:|-------:|--------:|-------------:|---------:|
| aina-translator-zh-ca-v2 |  22.43 |  50.65 |    **0.83** |         **0.79** |   
| Google Translate         |  **23.49**     |   **51.29**     |    **0.83**     |         **0.79** |    


#### Projecte Aina's Catalan-Chinese evaluation dataset

|              |   Bleu ↑  |   ChrF ↑ |   Comet ↑ |   Comet-kiwi ↑ |
|:-----------------------|-------:|------:|-------:|--------:|-------------:|---------:|
| aina-translator-zh-ca-v2 |  **29.21** |  57.41 |    **0.87** |         **0.82** |   
| Google Translate         |  28.86     |   **57.73**     |    **0.87**     |         **0.82** | 


## Additional information

### Author
The Language Technologies Unit from Barcelona Supercomputing Center.

### Contact
For further information, please send an email to <langtech@bsc.es>.

### Copyright
Copyright(c) 2023 by Language Technologies Unit, Barcelona Supercomputing Center.

### License
[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)

### Funding
This work has been promoted and financed by the Generalitat de Catalunya through the [Aina project](https://projecteaina.cat/).

### Disclaimer

<details>
<summary>Click to expand</summary>

The model published in this repository is intended for a generalist purpose and is available to third parties under a permissive Apache License, Version 2.0. 

Be aware that the model may have biases and/or any other undesirable distortions.

When third parties deploy or provide systems and/or services to other parties using this model (or any system based on it) 
or become users of the model, they should note that it is their responsibility to mitigate the risks arising from its use and, 
in any event, to comply with applicable regulations, including regulations regarding the use of Artificial Intelligence.

In no event shall the owner and creator of the model (Barcelona Supercomputing Center) 
be liable for any results arising from the use made by third parties.

</details>