File size: 8,858 Bytes
30313d2 c9930fc 30313d2 f99d91b c9930fc b03f709 c9930fc e25c9b8 c9930fc d408e65 c9930fc d408e65 c9930fc edd2fde c9930fc 54af6d2 4053987 54af6d2 c9930fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
---
license: cc-by-4.0
---
## Aina Project's Catalan-English machine translation model
## Table of Contents
- [Model Description](#model-description)
- [Intended Uses and Limitations](#intended-use)
- [How to Use](#how-to-use)
- [Training](#training)
- [Training data](#training-data)
- [Training procedure](#training-procedure)
- [Data Preparation](#data-preparation)
- [Tokenization](#tokenization)
- [Hyperparameters](#hyperparameters)
- [Evaluation](#evaluation)
- [Variable and Metrics](#variable-and-metrics)
- [Evaluation Results](#evaluation-results)
- [Additional Information](#additional-information)
- [Author](#author)
- [Contact Information](#contact-information)
- [Copyright](#copyright)
- [Licensing Information](#licensing-information)
- [Funding](#funding)
- [Disclaimer](#disclaimer)
## Model description
This model was trained from scratch using the [Fairseq toolkit](https://fairseq.readthedocs.io/en/latest/) on a combination of Catalan-English datasets, up to 11 million sentences. Additionally, the model is evaluated on several public datasecomprising 5 different domains (general, adminstrative, technology, biomedical, and news).
## Intended uses and limitations
You can use this model for machine translation from Catalan to English.
## How to use
### Usage
Required libraries:
```bash
pip install ctranslate2 pyonmttok
```
Translate a sentence using python
```python
import ctranslate2
import pyonmttok
from huggingface_hub import snapshot_download
model_dir = snapshot_download(repo_id="projecte-aina/mt-aina-ca-en", revision="main")
tokenizer=pyonmttok.Tokenizer(mode="none", sp_model_path = model_dir + "/spm.model")
tokenized=tokenizer.tokenize("Benvingut al projecte Aina!")
translator = ctranslate2.Translator(model_dir)
translated = translator.translate_batch([tokenized[0]])
print(tokenizer.detokenize(translated[0][0]['tokens']))
```
## Training
### Training data
The model was trained on a combination of the following datasets:
| Dataset | Sentences |
|--------------------|----------------|
| Global Voices | 21.342 |
| Memories Lluires | 1.173.055 |
| Wikimatrix | 1.205.908 |
| TED Talks | 50.979 |
| Tatoeba | 5.500 |
| CoVost 2 ca-en | 79.633 |
| CoVost 2 en-ca | 263.891 |
| Europarl | 1.965.734 |
| jw300 | 97.081 |
| Crawled Generalitat| 38.595 |
| Opus Books | 4.580 |
| CC Aligned | 5.787.682 |
| COVID_Wikipedia | 1.531 |
| EuroBooks | 3.746 |
| Gnome | 2.183 |
| KDE 4 | 144.153 |
| OpenSubtitles | 427.913 |
| QED | 69.823 |
| Ubuntu | 6.781 |
| Wikimedia | 208.073 |
|--------------------|----------------|
| **Total** | **11.558.183** |
### Training procedure
### Data preparation
All datasets are concatenated and filtered using the [mBERT Gencata parallel filter](https://huggingface.co/projecte-aina/mbert-base-gencata). Before training, the punctuation is normalized using a modified version of the join-single-file.py script from [SoftCatalà](https://github.com/Softcatala/nmt-models/blob/master/data-processing-tools/join-single-file.py)
#### Tokenization
All data is tokenized using sentencepiece, using 50 thousand token sentencepiece model learned from the combination of all filtered training data. This model is included.
#### Hyperparameters
The model is based on the Transformer-XLarge proposed by [Subramanian et al.](https://aclanthology.org/2021.wmt-1.18.pdf)
The following hyperparamenters were set on the Fairseq toolkit:
| Hyperparameter | Value |
|------------------------------------|-----------------------------------|
| Architecture | transformer_vaswani_wmt_en_de_big |
| Embedding size | 1024 |
| Feedforward size | 4096 |
| Number of heads | 16 |
| Encoder layers | 24 |
| Decoder layers | 6 |
| Normalize before attention | True |
| --share-decoder-input-output-embed | True |
| --share-all-embeddings | True |
| Effective batch size | 96.000 |
| Optimizer | adam |
| Adam betas | (0.9, 0.980) |
| Clip norm | 0.0 |
| Learning rate | 1e-3 |
| Lr. schedurer | inverse sqrt |
| Warmup updates | 4000 |
| Dropout | 0.1 |
| Label smoothing | 0.1 |
The model was trained for a total of 35.000 updates. Weights were saved every 1000 updates and reported results are the average of the last 16 checkpoints.
## Evaluation
### Variable and metrics
We use the BLEU score for evaluation on test sets: [Flores-101](https://github.com/facebookresearch/flores), [TaCon](https://elrc-share.eu/repository/browse/tacon-spanish-constitution-mt-test-set/84a96138b98611ec9c1a00155d02670628f3e6857b0f422abd82abc3795ec8c2/), [United Nations](https://zenodo.org/record/3888414#.Y33-_tLMIW0), [Cybersecurity](https://elrc-share.eu/repository/browse/cyber-mt-test-set/2bd93faab98c11ec9c1a00155d026706b96a490ed3e140f0a29a80a08c46e91e/), [wmt19 biomedical test set](), [wmt13 news test set](https://elrc-share.eu/repository/browse/catalan-wmt2013-machine-translation-shared-task-test-set/84a96139b98611ec9c1a00155d0267061a0aa1b62e2248e89aab4952f3c230fc/), [aina aapp]()
### Evaluation results
Below are the evaluation results on the machine translation from Catalan to English compared to [Softcatalà](https://www.softcatala.org/) and [Google Translate](https://translate.google.es/?hl=es):
| Test set | SoftCatalà | Google Translate | mt-aina-ca-en |
|----------------------|------------|------------------|---------------|
| Spanish Constitution | 35,8 | **43,2** | 40,3 |
| United Nations | 44,4 | **47,4** | 44,8 |
| aina_aapp | 48,8 | **53,0** | 51,5 |
| european_comission | 52,0 | **53,7** | 53,1 |
| Flores 101 dev | 42,7 | **47,5** | 46,1 |
| Flores 101 devtest | 42,5 | **46,9** | 45,2 |
| Cybersecurity | 52,5 | **58,0** | 54,2 |
| wmt 19 biomedical | 18,3 | **23,4** | 21,6 |
| wmt 13 news | 37,8 | **39,8** | 39,3 |
| Average | 39,2 | **45,0** | 41,6 |
## Additional information
### Author
Text Mining Unit (TeMU) at the Barcelona Supercomputing Center (bsc-temu@bsc.es)
### Contact information
For further information, send an email to aina@bsc.es
### Copyright
Copyright (c) 2022 Text Mining Unit at Barcelona Supercomputing Center
### Licensing Information
[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
### Funding
This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina).
## Disclaimer
<details>
<summary>Click to expand</summary>
The models published in this repository are intended for a generalist purpose and are available to third parties. These models may have bias and/or any other undesirable distortions.
When third parties, deploy or provide systems and/or services to other parties using any of these models (or using systems based on these models) or become users of the models, they should note that it is their responsibility to mitigate the risks arising from their use and, in any event, to comply with applicable regulations, including regulations regarding the use of Artificial Intelligence.
In no event shall the owner and creator of the models (BSC – Barcelona Supercomputing Center) be liable for any results arising from the use made by third parties of these models.
|