temp_assamese

This model is a fine-tuned version of microsoft/mdeberta-v3-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8132
  • Accuracy: 0.8287

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.4466 0.0931 5000 1.5004 0.7075
1.4994 0.1862 10000 1.2256 0.7532
1.2888 0.2793 15000 1.0994 0.7766
1.1746 0.3723 20000 1.0090 0.7915
1.0994 0.4654 25000 0.9514 0.8021
1.0379 0.5585 30000 0.9029 0.8115
0.9956 0.6516 35000 0.8695 0.8174
0.9647 0.7447 40000 0.8462 0.8216
0.9351 0.8378 45000 0.8274 0.8258
0.9194 0.9309 50000 0.8120 0.8286

Framework versions

  • Transformers 4.43.0.dev0
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
107
Safetensors
Model size
279M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for pritamdeka/mDeBERTa-v3-base-Assamese

Finetuned
(153)
this model