File size: 7,936 Bytes
34aa1cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
# Import libraries
import tkinter as tk
from tkinter import ttk, messagebox
from keras.layers import TextVectorization
import re
import tensorflow.strings as tf_strings
import json
import string
from keras.models import load_model
import tensorflow as tf
from keras.preprocessing.text import tokenizer_from_json
from keras.utils import pad_sequences
import numpy as np
import difflib
# English to Spanish translation
strip_chars = string.punctuation + "¿"
strip_chars = strip_chars.replace("[", "")
strip_chars = strip_chars.replace("]", "")
def custom_standardization(input_string):
lowercase = tf_strings.lower(input_string)
return tf_strings.regex_replace(lowercase, f"[{re.escape(strip_chars)}]", "")
# Load the English vectorization layer configuration
with open('eng_vectorization_config.json') as json_file:
eng_vectorization_config = json.load(json_file)
# Recreate the English vectorization layer with basic configuration
eng_vectorization = TextVectorization(
max_tokens=eng_vectorization_config['max_tokens'],
output_mode=eng_vectorization_config['output_mode'],
output_sequence_length=eng_vectorization_config['output_sequence_length']
)
# Apply the custom standardization function
eng_vectorization.standardize = custom_standardization
# Load the Spanish vectorization layer configuration
with open('spa_vectorization_config.json') as json_file:
spa_vectorization_config = json.load(json_file)
# Recreate the Spanish vectorization layer with basic configuration
spa_vectorization = TextVectorization(
max_tokens=spa_vectorization_config['max_tokens'],
output_mode=spa_vectorization_config['output_mode'],
output_sequence_length=spa_vectorization_config['output_sequence_length'],
standardize=custom_standardization
)
# Load and set the English vocabulary
with open('eng_vocab.json') as json_file:
eng_vocab = json.load(json_file)
eng_vectorization.set_vocabulary(eng_vocab)
# Load and set the Spanish vocabulary
with open('spa_vocab.json') as json_file:
spa_vocab = json.load(json_file)
spa_vectorization.set_vocabulary(spa_vocab)
# Load the Spanish model
transformer = load_model('transformer_model')
spa_index_lookup = dict(zip(range(len(spa_vocab)), spa_vocab))
max_decoded_sentence_length = 20
# Initialize list to track incorrect words
incorrect_words = []
def beam_search_decode(input_sentence, beam_width=3):
tokenized_input_sentence = eng_vectorization([input_sentence])
decoded_sentences = [("[start]", 0.0)]
for i in range(max_decoded_sentence_length):
all_candidates = []
for decoded_sentence, score in decoded_sentences:
tokenized_target_sentence = spa_vectorization([decoded_sentence])[:, :-1]
predictions = transformer([tokenized_input_sentence, tokenized_target_sentence])
top_k = tf.math.top_k(predictions[0, i, :], k=beam_width)
for j in range(beam_width):
predicted_token_index = top_k.indices[j].numpy()
predicted_token = spa_index_lookup[predicted_token_index]
candidate = (decoded_sentence + " " + predicted_token, score + top_k.values[j].numpy())
all_candidates.append(candidate)
ordered = sorted(all_candidates, key=lambda x: x[1], reverse=True)
decoded_sentences = ordered[:beam_width]
if all(sentence[0].endswith("[end]") for sentence in decoded_sentences):
break
return decoded_sentences[0][0]
# English to French translation
# Load French model
model = load_model('english_to_french_model')
# Load Tokenizer
with open('english_tokenizer.json') as f:
data = json.load(f)
english_tokenizer = tokenizer_from_json(data)
with open('french_tokenizer.json') as f:
data = json.load(f)
french_tokenizer = tokenizer_from_json(data)
# Load max length
with open('sequence_length.json') as f:
max_length = json.load(f)
def pad(x, length=None):
return pad_sequences(x, maxlen=length, padding='post')
def translate_to_french(english_sentence):
english_sentence = english_sentence.lower()
english_sentence = re.sub(r'[.?!,]', '', english_sentence)
english_sentence = english_tokenizer.texts_to_sequences([english_sentence])
english_sentence = pad(english_sentence, max_length)
english_sentence = english_sentence.reshape((-1, max_length))
french_sentence = model.predict(english_sentence)[0]
french_sentence = [np.argmax(word) for word in french_sentence]
french_sentence = french_tokenizer.sequences_to_texts([french_sentence])[0]
return french_sentence
def get_word_suggestions(word, vocab):
return difflib.get_close_matches(word, vocab, n=3, cutoff=0.6)
def check_and_correct_sentence(sentence, vocab):
words = sentence.split()
incorrect_words.clear()
corrected_sentence = []
for word in words:
if word not in vocab:
suggestions = get_word_suggestions(word, vocab)
incorrect_words.append((word, suggestions))
else:
corrected_sentence.append(word)
if incorrect_words:
message = f"Incorrect word(s) detected: {', '.join([w[0] for w in incorrect_words])}\n"
for word, suggestions in incorrect_words:
message += f"Suggestions for '{word}': {', '.join(suggestions) if suggestions else 'No suggestions available'}\n"
if len(incorrect_words) >= 2:
messagebox.showerror("Error", message)
return False
return True
def translate_to_spanish(english_sentence):
if not check_and_correct_sentence(english_sentence, eng_vocab):
return ""
spanish_sentence = beam_search_decode(english_sentence)
return spanish_sentence.replace("[start]", "").replace("[end]", "").strip()
# Function to handle translation request based on selected language
def handle_translate():
selected_language = language_var.get()
english_sentence = text_input.get("1.0", "end-1c").strip()
if not english_sentence:
messagebox.showwarning("Warning", "Please enter a sentence to translate.")
return
if selected_language == "French":
translation = translate_to_french(english_sentence)
elif selected_language == "Spanish":
translation = translate_to_spanish(english_sentence)
translation_output.delete("1.0", "end")
translation_output.insert("end", f"{selected_language} translation: {translation}")
# Setting up the main window
root = tk.Tk()
root.title("Language Translator")
root.geometry("550x600")
# Font configuration
font_style = "Times New Roman"
font_size = 14
# Frame for input
input_frame = tk.Frame(root)
input_frame.pack(pady=10)
# Heading for input
input_heading = tk.Label(input_frame, text="Enter the text to be translated", font=(font_style, font_size, 'bold'))
input_heading.pack()
# Text input for English sentence
text_input = tk.Text(input_frame, height=5, width=50, font=(font_style, font_size))
text_input.pack()
# Language selection
language_var = tk.StringVar()
language_label = tk.Label(root, text="Select the language to translate to", font=(font_style, font_size, 'bold'))
language_label.pack()
language_select = ttk.Combobox(root, textvariable=language_var, values=["French", "Spanish"], font=(font_style, font_size), state="readonly")
language_select.pack()
# Submit button
submit_button = ttk.Button(root, text="Translate", command=handle_translate)
submit_button.pack(pady=10)
# Frame for output
output_frame = tk.Frame(root)
output_frame.pack(pady=10)
# Heading for output
output_heading = tk.Label(output_frame, text="Translation: ", font=(font_style, font_size, 'bold'))
output_heading.pack()
# Text output for translations
translation_output = tk.Text(output_frame, height=10, width=50, font=(font_style, font_size))
translation_output.pack()
# Running the application
root.mainloop() |