File size: 3,687 Bytes
de4b817
dbafa58
 
de4b817
ef0b9de
de4b817
ef0b9de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbafa58
ef0b9de
 
 
bc68fbf
dbafa58
7a16ef2
dbafa58
 
de4b817
 
 
ef0b9de
de4b817
cc8b8ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bda6a9
de4b817
 
 
 
 
 
 
 
 
e838ab8
de4b817
 
 
6bda6a9
de4b817
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
---
license: 
- cc-by-nc-sa-4.0
tags:
- text generation
- generated_from_trainer
- email generation
- email
datasets:
- aeslc
- postbot/multi-emails-100k

widget:
- text: "Good Morning Professor Beans,

Hope you are doing well. I just wanted to reach out and ask if differential calculus will be on the exam"
  example_title: "email to prof"
- text: "Hey <NAME>,\n\nThank you for signing up for my weekly newsletter. Before we get started, you'll have to confirm your email address." 
  example_title: "newsletter"
- text: "Hi <NAME>,\n\nI hope this email finds you well. I wanted to reach out and ask about office hours" 
  example_title: "office hours"
- text: "Greetings <NAME>,\n\nI hope you had a splendid evening at the Company sausage eating festival. I am reaching out because" 
  example_title: "festival"
- text: "Good Morning Harold,\n\nI was wondering when the next" 
  example_title: "event"
- text: "URGENT - I need the TPS reports"
  example_title: "URGENT"
- text: "Hi Archibald,\n\nI hope this email finds you extremely well." 
  example_title: "emails that find you"
- text: "Hello there.\n\nI just wanted to reach out and check in to"
  example_title: "checking in"
- text: "Hello <NAME>,\n\nI hope this email finds you well. I wanted to reach out and see if you've enjoyed your time with us"
  example_title: "work well"
- text: "Hi <NAME>,\n\nI hope this email finds you well. I wanted to reach out and see if we could catch up"
  example_title: "catch up"
- text: "I'm <NAME> and I just moved into the area and wanted to reach out and get some details on where I could get groceries and"
  example_title: "grocery"
parameters:
  min_length: 32
  max_length: 128
  no_repeat_ngram_size: 2
  do_sample: True
  temperature: 0.3
  top_k: 20
  top_p: 0.95
  repetition_penalty: 3.5
  length_penalty: 0.9
---


# gpt2-medium-emailgen


Why write the entire email when you can generate (most of) it?

```python
from transformers import pipeline

model_tag = "postbot/gpt2-medium-emailgen"
generator = pipeline(
              'text-generation', 
              model=model_tag, 
            )
            
prompt = """
Hello, 

Following up on the bubblegum shipment."""

result = generator(
    prompt,
    max_length=64,
    do_sample=False,
    early_stopping=True,
) # generate
print(result[0]['generated_text'])
```

## about

This model is a fine-tuned version of [gpt2-medium](https://huggingface.co/gpt2-medium) on the postbot/multi-emails-100k dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5840

## Model description

More information needed

## Intended uses & limitations

This is currently the most performant model publicly available for email generation, and is licensed with `cc-by-nc-sa-4.0`.

## Training and evaluation data

- the dataset is essentially a hand-curated/augmented expansion to the classic `aeslc` dataset

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.02
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.8701        | 1.0   | 789  | 1.8378          |
| 1.5065        | 2.0   | 1578 | 1.6176          |
| 1.1873        | 3.0   | 2367 | 1.5840          |


### Framework versions

- Transformers 4.22.2
- Pytorch 1.10.0+cu113
- Datasets 2.5.1
- Tokenizers 0.12.1