YAML Metadata Warning: The pipeline tag "visual-document-retrieval" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, text2text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, audio-text-to-text, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, video-text-to-text, keypoint-detection, any-to-any, other

finetune_colpali_v1_2-vdsid_french-4bit

This model is a fine-tuned version of vidore/colpaligemma-3b-pt-448-base on the vidore/vdsid_french dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0212
  • Model Preparation Time: 0.0144

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 1.5

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time
No log 0.0034 1 0.0571 0.0144
0.0397 0.3404 100 0.0247 0.0144
0.0195 0.6809 200 0.0266 0.0144
0.0098 1.0213 300 0.0240 0.0144
0.0299 1.3617 400 0.0223 0.0144

Framework versions

  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.2
  • Tokenizers 0.20.1
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The HF Inference API does not support visual-document-retrieval models for transformers library.

Model tree for pontino/finetune_colpali_v1_2-vdsid_french-4bit

Finetuned
(27)
this model