File size: 1,681 Bytes
ab15f16
 
 
a761def
ab15f16
 
 
 
 
9df9630
 
 
 
 
 
 
ab15f16
 
a761def
ab15f16
 
 
 
 
 
 
a761def
ab15f16
0f13908
 
ab15f16
 
 
9df9630
ab15f16
 
 
9df9630
ab15f16
 
 
9df9630
ab15f16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f13908
ab15f16
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: apache-2.0
tags:
- Image-Classification
- generated_from_trainer
datasets:
- beans
metrics:
- accuracy
widget:
  - src: >-
      https://huggingface.co/platzi/platzi-vit-base-beans/resolve/main/healthy.jpeg
    example_title: Healthy
  - src: >-
      https://huggingface.co/platzi/platzi-vit-base-beans/resolve/main/bean_rust.jpeg
    example_title: Bean Rust
model-index:
- name: platzi-vit-model-Joaquin-Romero
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# platzi-vit-model-Joaquin-Romero

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the datasetX dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0613
- Accuracy: 0.9850

## Model description

It's a Image Classification model performed 

## Intended uses & limitations

None

## Training and evaluation data

Beans dataset

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.1475        | 3.85  | 500  | 0.0613          | 0.9850   |


### Framework versions

- Transformers 4.27.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2