File size: 1,870 Bytes
ec1d731 5d8bd10 ec1d731 5d8bd10 ec1d731 6032376 ec1d731 6032376 ec1d731 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
license: other
base_model: stabilityai/stablelm-2-1_6b
tags:
- choo-choo
- trl
- sft
- generated_from_trainer
- trl
- sft
- generated_from_trainer
datasets:
- generator
model-index:
- name: stablelm-2-1.6-disticoder-v0.1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# stablelm-2-1.6-disticoder-v0.1
This model is a fine-tuned version of [stabilityai/stablelm-2-1_6b](https://huggingface.co/stabilityai/stablelm-2-1_6b) on the argilla/DistiCoder-dpo-binarized dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1315
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.7319 | 0.44 | 5 | 1.5441 |
| 1.3425 | 0.89 | 10 | 1.2968 |
| 1.1709 | 1.33 | 15 | 1.2151 |
| 1.0994 | 1.78 | 20 | 1.1605 |
| 1.0287 | 2.22 | 25 | 1.1382 |
| 1.0303 | 2.67 | 30 | 1.1315 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.1.1+cu121
- Datasets 2.16.1
- Tokenizers 0.15.2
|