File size: 20,667 Bytes
7d7d3c5 163f775 7d7d3c5 7f9472e fd70f4c d8d8f6b 8891e0e a6b950b cc26306 2043216 3fbe857 b34c0d1 106596b e89de12 d33d55c 3fcee11 5fd9384 1136126 19a38c3 8e2c6ea bd6b5a4 ce7cd31 612470a 3fbc867 fbd6e4d cc96fb4 756171f 48720d4 56ac9ee edefcac d1a4321 a28f048 fe0a43a 185285b 354394b 1e2e431 ffafe20 6c4174b 6d6b830 d70bd97 02784b7 c5b339a 5de5af9 dc8f767 ae3365c a9dcdb7 3eb5e72 b89a327 0338a3e c4bd8f4 82f6ad4 7a35ff1 430dac5 6bfeead 426396b ac8738c e777dfd c302d40 11d74a7 90e603a 6951ea0 75e3214 535a074 8272d3b 6960e50 b4f4d61 535e015 fca7c4b a8ac979 c95e72c 1484567 bf69677 f9a0ae1 31e701a 29b0d91 656cba8 528d3b0 aaf25b1 dc6df3d 28a08c7 791fa37 b6266d6 e88bf1d c11250e a9a0168 f89e3cb 1250d26 aeda760 8ab728a d8282f8 033d9b6 cbe1641 f4a730e 42d5238 d295478 78540a9 4938b0a 2d48387 ad19f46 d7e4d25 2d96d98 f56e332 3f1e186 430a8a2 6e5b377 b57e864 dc13a56 48c8c6a 33baa9b 58407b8 214ee03 a34e11a 16a469b 13a05e0 5394b20 be0accf c534de4 6f222fa 7355947 bac0793 471bf9e dc460a2 f5f6c80 c817a99 27f839d 44b5ced 49e3e90 6277811 58e674c b4c208f 48d13ac 924627f 4469759 18c9eec 948850e f35a666 7a2da74 1d959fd f2fbbf0 50e6f80 1a0a726 65c920d e1e8a64 fe7fed8 a5fee77 562be24 3aeb144 030a9db 75bb586 71cf1b9 f42f235 d8f1a63 6e00289 4ff07e5 7f5f1fd ea38c90 2cdd5b6 ff3e5c8 48188c9 b75fa45 bdaf93d 2b2b5ff e1372ee f710dae 4d053b3 d0c23c5 1bace52 8f06b5b 7564e1f 726be00 e7de98e ce91200 b0c1e66 4c2d311 1e6a7aa ad7aa98 c11ae0b 137420f 2e7f44a 61f7465 5e760dc 5ae85b3 f637419 d58aa87 a86d43a 1f960f2 03573d8 2e9d4bf 570c169 936fdcb 5c15acc a72c548 74bd706 4afe696 f9b30f1 52f98c8 957064d bac091f 2cda385 53cee62 2cbfda0 6da8263 ca78311 6e150e6 140eae3 22ecdc5 f786efa f8c78e8 eb7ba37 06e28e9 4d0dce4 7b8c1c1 f179a8e b6b9cf9 c5110d6 87ac9ba 528d0bb db9c16d 92517f3 68755ee 5a821ec e9ec3fe 9b6b5ea d7e91cb 4d6ae84 80910dd 1bff9aa 5576533 63136e1 0095872 3f7254c c1baa4c d26d845 1e6d439 aa894f9 a8d8629 bd500a2 48a26bb cabde54 63ddef6 74a4ce6 4e755e2 a646535 067dde2 bbdd79e 5444e8d 4fe8ccf 254d976 d68c4cd 5d6f8d5 208aa49 50145cb 21024c2 fb08736 2a3a071 0aeba02 2b7f33e 9bb67a3 bd24676 cbe0ec9 90f4b60 ad889d6 90b67fe fc77659 d6cc41d f68bb11 dc793ab 4a03cf0 dc28857 7fedba0 994186f 67af7a2 9732134 29d1bbb 31010f4 4c46792 0264556 c531bc8 bdda741 5d9deee fd1c8b3 7a70276 6812cb8 8e5d9e3 bb036af 2975756 b61778c 83dfc60 02783ba 11814a1 2421592 99fbb8e 83fc23f 633248c 03d944b c0028bf c7be946 ae44b90 c1d0a31 f13b116 22b7a6c 1978592 e00b966 b9cd35b cce5134 2dc697d cb8b186 c975d4c 575780a 5b96572 ef30c13 b3dee9e 173366e ce9c322 b9bc328 75c93fb b45e3cc 04fd013 ffca730 88de451 10d674c c9c60e2 bf0b360 7832318 d11f41b dc5bba4 831c36f 447d59b e21aa3b ffbab4a 0170751 6fa0488 b1fe227 f44663e b2d37ce b725113 911d24f 461ba4d 8158349 ad7316b a70358e 7140d82 63f3b10 b98c468 9e36a45 47e8386 3dfc79f 8fcde24 824cec6 64cc629 e618608 5f1fb4e 2efaadc cfd6380 3563ea8 d122a29 d0fde0a f1be9a6 2d26497 5238d6e 2e0e44e 376d2f1 3232f9f b793173 42d0f22 18e720e 6e26691 03cdec9 9a41bb7 394520b e626881 f82ef3d 21bbf54 5894128 028b6e7 c583fd1 4ba053d 01d5fc4 8560a68 9bc8601 51721ef 8643248 8c05e5d c9474bf 0b1e39b e7044d2 e894435 bebb406 df880b0 cc9d243 71feff5 a4566c9 391adf3 1dc30ff be0e75c 11e2ee6 1813e7a 74c38a8 75c97ec 2dcf835 71e7964 4de5c37 66f2539 10b0273 98eb937 85ba332 a12f04c 4899355 e2291bf 3f89fff dfb8eb8 3db4426 291910b 2107da2 ba487e8 a390224 5bb940b 3b7917a 2892803 1c7154d 9f06175 7f56029 a16d211 d548a93 56afd24 cf3feb6 0c3d6af 78e6868 cbe093a c8da964 b88fe44 6819a98 d2a04c6 c0b0339 13d556b a8f0cb1 9009ace 1275c84 9f51204 5c05a42 3c5ce41 7889855 b0e9b81 bc7d36e 7a035c6 d758f9b b92a28d ae9b6b0 6232a13 d1f7213 843a5e4 ac2ba23 69b7041 b0d7226 beab367 29a9e3f f68e73b 41f3d45 559a1d1 534e4ac 69f0c71 590b6fd 35da305 e58cdc2 cd58ada c2b0527 21007c8 4c29510 ec427bf 926b5e1 a85554f b88bcd1 3b093f2 99a3f9e 163f775 7d7d3c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 |
---
license: apache-2.0
base_model: t5-small
tags:
- generated_from_keras_callback
model-index:
- name: pijarcandra22/NMTIndoBaliT5
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# pijarcandra22/NMTIndoBaliT5
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0512
- Validation Loss: 2.6010
- Epoch: 472
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-04, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 3.2881 | 2.6852 | 0 |
| 2.7514 | 2.4004 | 1 |
| 2.5012 | 2.2171 | 2 |
| 2.3252 | 2.0959 | 3 |
| 2.1930 | 1.9901 | 4 |
| 2.0837 | 1.9130 | 5 |
| 1.9912 | 1.8452 | 6 |
| 1.9107 | 1.7974 | 7 |
| 1.8459 | 1.7521 | 8 |
| 1.7902 | 1.7165 | 9 |
| 1.7321 | 1.6842 | 10 |
| 1.6811 | 1.6400 | 11 |
| 1.6374 | 1.6230 | 12 |
| 1.5973 | 1.5960 | 13 |
| 1.5588 | 1.5765 | 14 |
| 1.5244 | 1.5589 | 15 |
| 1.4933 | 1.5370 | 16 |
| 1.4588 | 1.5300 | 17 |
| 1.4325 | 1.5107 | 18 |
| 1.4054 | 1.4970 | 19 |
| 1.3730 | 1.4839 | 20 |
| 1.3475 | 1.4789 | 21 |
| 1.3231 | 1.4616 | 22 |
| 1.3035 | 1.4568 | 23 |
| 1.2768 | 1.4489 | 24 |
| 1.2587 | 1.4396 | 25 |
| 1.2380 | 1.4364 | 26 |
| 1.2208 | 1.4273 | 27 |
| 1.2026 | 1.4228 | 28 |
| 1.1755 | 1.4141 | 29 |
| 1.1614 | 1.4062 | 30 |
| 1.1460 | 1.4060 | 31 |
| 1.1289 | 1.3934 | 32 |
| 1.1134 | 1.4007 | 33 |
| 1.0965 | 1.3927 | 34 |
| 1.0818 | 1.3874 | 35 |
| 1.0661 | 1.3921 | 36 |
| 1.0482 | 1.3795 | 37 |
| 1.0345 | 1.3853 | 38 |
| 1.0195 | 1.3835 | 39 |
| 1.0074 | 1.3772 | 40 |
| 0.9890 | 1.3851 | 41 |
| 0.9833 | 1.3724 | 42 |
| 0.9667 | 1.3740 | 43 |
| 0.9561 | 1.3752 | 44 |
| 0.9429 | 1.3673 | 45 |
| 0.9301 | 1.3828 | 46 |
| 0.9141 | 1.3806 | 47 |
| 0.9050 | 1.3772 | 48 |
| 0.8952 | 1.3812 | 49 |
| 0.8809 | 1.3718 | 50 |
| 0.8725 | 1.3825 | 51 |
| 0.8601 | 1.3842 | 52 |
| 0.8488 | 1.3827 | 53 |
| 0.8375 | 1.3920 | 54 |
| 0.8257 | 1.3936 | 55 |
| 0.8184 | 1.3842 | 56 |
| 0.8081 | 1.3846 | 57 |
| 0.7986 | 1.3860 | 58 |
| 0.7883 | 1.3943 | 59 |
| 0.7787 | 1.4004 | 60 |
| 0.7666 | 1.4071 | 61 |
| 0.7554 | 1.4079 | 62 |
| 0.7470 | 1.4038 | 63 |
| 0.7366 | 1.4141 | 64 |
| 0.7279 | 1.4135 | 65 |
| 0.7250 | 1.4111 | 66 |
| 0.7128 | 1.4196 | 67 |
| 0.7042 | 1.4182 | 68 |
| 0.6946 | 1.4378 | 69 |
| 0.6851 | 1.4350 | 70 |
| 0.6764 | 1.4403 | 71 |
| 0.6695 | 1.4474 | 72 |
| 0.6606 | 1.4454 | 73 |
| 0.6565 | 1.4516 | 74 |
| 0.6450 | 1.4595 | 75 |
| 0.6347 | 1.4700 | 76 |
| 0.6287 | 1.4746 | 77 |
| 0.6183 | 1.4813 | 78 |
| 0.6143 | 1.4785 | 79 |
| 0.6053 | 1.4848 | 80 |
| 0.5994 | 1.4777 | 81 |
| 0.5903 | 1.4962 | 82 |
| 0.5828 | 1.5102 | 83 |
| 0.5760 | 1.4957 | 84 |
| 0.5696 | 1.5121 | 85 |
| 0.5637 | 1.5168 | 86 |
| 0.5578 | 1.5183 | 87 |
| 0.5499 | 1.5184 | 88 |
| 0.5396 | 1.5433 | 89 |
| 0.5345 | 1.5411 | 90 |
| 0.5268 | 1.5338 | 91 |
| 0.5220 | 1.5556 | 92 |
| 0.5184 | 1.5489 | 93 |
| 0.5122 | 1.5635 | 94 |
| 0.5014 | 1.5674 | 95 |
| 0.4921 | 1.5773 | 96 |
| 0.4925 | 1.5773 | 97 |
| 0.4821 | 1.5938 | 98 |
| 0.4769 | 1.6013 | 99 |
| 0.4723 | 1.5979 | 100 |
| 0.4692 | 1.6131 | 101 |
| 0.4603 | 1.6247 | 102 |
| 0.4553 | 1.6276 | 103 |
| 0.4476 | 1.6376 | 104 |
| 0.4401 | 1.6390 | 105 |
| 0.4384 | 1.6442 | 106 |
| 0.4305 | 1.6548 | 107 |
| 0.4263 | 1.6617 | 108 |
| 0.4232 | 1.6523 | 109 |
| 0.4185 | 1.6561 | 110 |
| 0.4129 | 1.6779 | 111 |
| 0.4036 | 1.6897 | 112 |
| 0.4005 | 1.6873 | 113 |
| 0.3948 | 1.6987 | 114 |
| 0.3892 | 1.7120 | 115 |
| 0.3859 | 1.7049 | 116 |
| 0.3795 | 1.7241 | 117 |
| 0.3802 | 1.7273 | 118 |
| 0.3731 | 1.7387 | 119 |
| 0.3672 | 1.7447 | 120 |
| 0.3629 | 1.7513 | 121 |
| 0.3607 | 1.7515 | 122 |
| 0.3543 | 1.7585 | 123 |
| 0.3504 | 1.7601 | 124 |
| 0.3477 | 1.7657 | 125 |
| 0.3453 | 1.7733 | 126 |
| 0.3448 | 1.7718 | 127 |
| 0.3390 | 1.7971 | 128 |
| 0.3352 | 1.7929 | 129 |
| 0.3273 | 1.7988 | 130 |
| 0.3250 | 1.8192 | 131 |
| 0.3222 | 1.8220 | 132 |
| 0.3173 | 1.8289 | 133 |
| 0.3171 | 1.8261 | 134 |
| 0.3124 | 1.8415 | 135 |
| 0.3040 | 1.8379 | 136 |
| 0.3040 | 1.8533 | 137 |
| 0.3030 | 1.8511 | 138 |
| 0.2970 | 1.8537 | 139 |
| 0.2938 | 1.8697 | 140 |
| 0.2929 | 1.8730 | 141 |
| 0.2892 | 1.8632 | 142 |
| 0.2816 | 1.8796 | 143 |
| 0.2812 | 1.8870 | 144 |
| 0.2761 | 1.8891 | 145 |
| 0.2731 | 1.9134 | 146 |
| 0.2698 | 1.9100 | 147 |
| 0.2671 | 1.9207 | 148 |
| 0.2639 | 1.9196 | 149 |
| 0.2621 | 1.9130 | 150 |
| 0.2589 | 1.9273 | 151 |
| 0.2558 | 1.9336 | 152 |
| 0.2545 | 1.9355 | 153 |
| 0.2487 | 1.9551 | 154 |
| 0.2493 | 1.9573 | 155 |
| 0.2449 | 1.9552 | 156 |
| 0.2421 | 1.9591 | 157 |
| 0.2405 | 1.9556 | 158 |
| 0.2367 | 1.9807 | 159 |
| 0.2342 | 1.9859 | 160 |
| 0.2316 | 1.9803 | 161 |
| 0.2281 | 1.9853 | 162 |
| 0.2269 | 1.9970 | 163 |
| 0.2250 | 2.0120 | 164 |
| 0.2236 | 2.0107 | 165 |
| 0.2194 | 2.0208 | 166 |
| 0.2183 | 2.0198 | 167 |
| 0.2168 | 2.0265 | 168 |
| 0.2172 | 2.0278 | 169 |
| 0.2117 | 2.0380 | 170 |
| 0.2078 | 2.0448 | 171 |
| 0.2091 | 2.0415 | 172 |
| 0.2065 | 2.0459 | 173 |
| 0.2027 | 2.0597 | 174 |
| 0.1995 | 2.0659 | 175 |
| 0.1980 | 2.0811 | 176 |
| 0.1971 | 2.0704 | 177 |
| 0.1932 | 2.0785 | 178 |
| 0.1892 | 2.0783 | 179 |
| 0.1924 | 2.0742 | 180 |
| 0.1872 | 2.0979 | 181 |
| 0.1858 | 2.0958 | 182 |
| 0.1853 | 2.1005 | 183 |
| 0.1834 | 2.1166 | 184 |
| 0.1810 | 2.1027 | 185 |
| 0.1789 | 2.1151 | 186 |
| 0.1768 | 2.1302 | 187 |
| 0.1768 | 2.1200 | 188 |
| 0.1766 | 2.1399 | 189 |
| 0.1732 | 2.1196 | 190 |
| 0.1719 | 2.1362 | 191 |
| 0.1697 | 2.1447 | 192 |
| 0.1684 | 2.1464 | 193 |
| 0.1699 | 2.1442 | 194 |
| 0.1657 | 2.1492 | 195 |
| 0.1607 | 2.1644 | 196 |
| 0.1603 | 2.1667 | 197 |
| 0.1580 | 2.1715 | 198 |
| 0.1588 | 2.1818 | 199 |
| 0.1551 | 2.1825 | 200 |
| 0.1572 | 2.1779 | 201 |
| 0.1552 | 2.1842 | 202 |
| 0.1528 | 2.2038 | 203 |
| 0.1530 | 2.1941 | 204 |
| 0.1501 | 2.1903 | 205 |
| 0.1492 | 2.2089 | 206 |
| 0.1498 | 2.1871 | 207 |
| 0.1481 | 2.1888 | 208 |
| 0.1486 | 2.2130 | 209 |
| 0.1434 | 2.2259 | 210 |
| 0.1432 | 2.2159 | 211 |
| 0.1436 | 2.2151 | 212 |
| 0.1411 | 2.2221 | 213 |
| 0.1414 | 2.2294 | 214 |
| 0.1381 | 2.2310 | 215 |
| 0.1360 | 2.2444 | 216 |
| 0.1353 | 2.2427 | 217 |
| 0.1372 | 2.2461 | 218 |
| 0.1350 | 2.2455 | 219 |
| 0.1319 | 2.2616 | 220 |
| 0.1345 | 2.2556 | 221 |
| 0.1319 | 2.2567 | 222 |
| 0.1301 | 2.2589 | 223 |
| 0.1273 | 2.2709 | 224 |
| 0.1266 | 2.2737 | 225 |
| 0.1251 | 2.2794 | 226 |
| 0.1255 | 2.2707 | 227 |
| 0.1264 | 2.2903 | 228 |
| 0.1252 | 2.2681 | 229 |
| 0.1229 | 2.2939 | 230 |
| 0.1217 | 2.2889 | 231 |
| 0.1214 | 2.2855 | 232 |
| 0.1195 | 2.3005 | 233 |
| 0.1196 | 2.3030 | 234 |
| 0.1200 | 2.3065 | 235 |
| 0.1176 | 2.2957 | 236 |
| 0.1183 | 2.2850 | 237 |
| 0.1173 | 2.3067 | 238 |
| 0.1158 | 2.3098 | 239 |
| 0.1175 | 2.3070 | 240 |
| 0.1144 | 2.3091 | 241 |
| 0.1113 | 2.3286 | 242 |
| 0.1112 | 2.3344 | 243 |
| 0.1122 | 2.3201 | 244 |
| 0.1112 | 2.3277 | 245 |
| 0.1103 | 2.3282 | 246 |
| 0.1074 | 2.3500 | 247 |
| 0.1098 | 2.3347 | 248 |
| 0.1096 | 2.3363 | 249 |
| 0.1063 | 2.3397 | 250 |
| 0.1053 | 2.3460 | 251 |
| 0.1077 | 2.3321 | 252 |
| 0.1055 | 2.3546 | 253 |
| 0.1053 | 2.3340 | 254 |
| 0.1041 | 2.3378 | 255 |
| 0.1027 | 2.3657 | 256 |
| 0.1030 | 2.3373 | 257 |
| 0.1018 | 2.3576 | 258 |
| 0.1040 | 2.3498 | 259 |
| 0.1010 | 2.3487 | 260 |
| 0.1011 | 2.3558 | 261 |
| 0.0999 | 2.3610 | 262 |
| 0.0996 | 2.3547 | 263 |
| 0.0989 | 2.3651 | 264 |
| 0.0987 | 2.3588 | 265 |
| 0.1003 | 2.3488 | 266 |
| 0.0966 | 2.3740 | 267 |
| 0.0973 | 2.3670 | 268 |
| 0.0980 | 2.3540 | 269 |
| 0.0977 | 2.3531 | 270 |
| 0.0956 | 2.3516 | 271 |
| 0.0940 | 2.3640 | 272 |
| 0.0941 | 2.3609 | 273 |
| 0.0933 | 2.3583 | 274 |
| 0.0954 | 2.3766 | 275 |
| 0.0905 | 2.3796 | 276 |
| 0.0931 | 2.3734 | 277 |
| 0.0924 | 2.3788 | 278 |
| 0.0897 | 2.3839 | 279 |
| 0.0900 | 2.3819 | 280 |
| 0.0900 | 2.3771 | 281 |
| 0.0913 | 2.3619 | 282 |
| 0.0888 | 2.3731 | 283 |
| 0.0901 | 2.3813 | 284 |
| 0.0877 | 2.3956 | 285 |
| 0.0882 | 2.3754 | 286 |
| 0.0874 | 2.3767 | 287 |
| 0.0862 | 2.3913 | 288 |
| 0.0877 | 2.3835 | 289 |
| 0.0864 | 2.4017 | 290 |
| 0.0858 | 2.4085 | 291 |
| 0.0863 | 2.4105 | 292 |
| 0.0858 | 2.4059 | 293 |
| 0.0865 | 2.3823 | 294 |
| 0.0843 | 2.4068 | 295 |
| 0.0849 | 2.4148 | 296 |
| 0.0838 | 2.4138 | 297 |
| 0.0837 | 2.4177 | 298 |
| 0.0824 | 2.4125 | 299 |
| 0.0830 | 2.3931 | 300 |
| 0.0827 | 2.4092 | 301 |
| 0.0840 | 2.4185 | 302 |
| 0.0835 | 2.4079 | 303 |
| 0.0814 | 2.4121 | 304 |
| 0.0820 | 2.4149 | 305 |
| 0.0811 | 2.3981 | 306 |
| 0.0815 | 2.4207 | 307 |
| 0.0795 | 2.4305 | 308 |
| 0.0816 | 2.4200 | 309 |
| 0.0792 | 2.4255 | 310 |
| 0.0803 | 2.4238 | 311 |
| 0.0781 | 2.4316 | 312 |
| 0.0773 | 2.4552 | 313 |
| 0.0777 | 2.4426 | 314 |
| 0.0767 | 2.4411 | 315 |
| 0.0775 | 2.4338 | 316 |
| 0.0774 | 2.4471 | 317 |
| 0.0775 | 2.4411 | 318 |
| 0.0772 | 2.4345 | 319 |
| 0.0767 | 2.4524 | 320 |
| 0.0773 | 2.4268 | 321 |
| 0.0764 | 2.4423 | 322 |
| 0.0763 | 2.4347 | 323 |
| 0.0757 | 2.4518 | 324 |
| 0.0761 | 2.4477 | 325 |
| 0.0742 | 2.4567 | 326 |
| 0.0763 | 2.4599 | 327 |
| 0.0745 | 2.4768 | 328 |
| 0.0751 | 2.4397 | 329 |
| 0.0744 | 2.4510 | 330 |
| 0.0737 | 2.4455 | 331 |
| 0.0747 | 2.4608 | 332 |
| 0.0724 | 2.4727 | 333 |
| 0.0740 | 2.4467 | 334 |
| 0.0739 | 2.4447 | 335 |
| 0.0716 | 2.4674 | 336 |
| 0.0723 | 2.4512 | 337 |
| 0.0726 | 2.4452 | 338 |
| 0.0709 | 2.4469 | 339 |
| 0.0721 | 2.4593 | 340 |
| 0.0719 | 2.4458 | 341 |
| 0.0704 | 2.4783 | 342 |
| 0.0702 | 2.4690 | 343 |
| 0.0720 | 2.4510 | 344 |
| 0.0700 | 2.4665 | 345 |
| 0.0713 | 2.4748 | 346 |
| 0.0693 | 2.4626 | 347 |
| 0.0687 | 2.4665 | 348 |
| 0.0685 | 2.4568 | 349 |
| 0.0692 | 2.4718 | 350 |
| 0.0694 | 2.4751 | 351 |
| 0.0691 | 2.4684 | 352 |
| 0.0684 | 2.4866 | 353 |
| 0.0674 | 2.4946 | 354 |
| 0.0671 | 2.4772 | 355 |
| 0.0674 | 2.4763 | 356 |
| 0.0672 | 2.5013 | 357 |
| 0.0683 | 2.4805 | 358 |
| 0.0675 | 2.4810 | 359 |
| 0.0660 | 2.4837 | 360 |
| 0.0663 | 2.4880 | 361 |
| 0.0659 | 2.4878 | 362 |
| 0.0670 | 2.4878 | 363 |
| 0.0663 | 2.4880 | 364 |
| 0.0649 | 2.4862 | 365 |
| 0.0661 | 2.4902 | 366 |
| 0.0655 | 2.5094 | 367 |
| 0.0645 | 2.5056 | 368 |
| 0.0643 | 2.5108 | 369 |
| 0.0651 | 2.5107 | 370 |
| 0.0645 | 2.5097 | 371 |
| 0.0649 | 2.5055 | 372 |
| 0.0641 | 2.5140 | 373 |
| 0.0648 | 2.5048 | 374 |
| 0.0638 | 2.5043 | 375 |
| 0.0641 | 2.5189 | 376 |
| 0.0648 | 2.5121 | 377 |
| 0.0633 | 2.5016 | 378 |
| 0.0635 | 2.5086 | 379 |
| 0.0630 | 2.5201 | 380 |
| 0.0624 | 2.5168 | 381 |
| 0.0628 | 2.5057 | 382 |
| 0.0625 | 2.5213 | 383 |
| 0.0638 | 2.5116 | 384 |
| 0.0633 | 2.5119 | 385 |
| 0.0629 | 2.5153 | 386 |
| 0.0631 | 2.5124 | 387 |
| 0.0618 | 2.5068 | 388 |
| 0.0618 | 2.5147 | 389 |
| 0.0616 | 2.5187 | 390 |
| 0.0607 | 2.5190 | 391 |
| 0.0609 | 2.5095 | 392 |
| 0.0624 | 2.5009 | 393 |
| 0.0605 | 2.5058 | 394 |
| 0.0623 | 2.5067 | 395 |
| 0.0616 | 2.4963 | 396 |
| 0.0609 | 2.5164 | 397 |
| 0.0600 | 2.5098 | 398 |
| 0.0598 | 2.5210 | 399 |
| 0.0600 | 2.5219 | 400 |
| 0.0601 | 2.5294 | 401 |
| 0.0597 | 2.5104 | 402 |
| 0.0592 | 2.5396 | 403 |
| 0.0593 | 2.5355 | 404 |
| 0.0599 | 2.5125 | 405 |
| 0.0592 | 2.5513 | 406 |
| 0.0595 | 2.5446 | 407 |
| 0.0581 | 2.5417 | 408 |
| 0.0593 | 2.5255 | 409 |
| 0.0597 | 2.5447 | 410 |
| 0.0588 | 2.5475 | 411 |
| 0.0584 | 2.5529 | 412 |
| 0.0576 | 2.5431 | 413 |
| 0.0573 | 2.5441 | 414 |
| 0.0585 | 2.5366 | 415 |
| 0.0571 | 2.5554 | 416 |
| 0.0580 | 2.5337 | 417 |
| 0.0589 | 2.5227 | 418 |
| 0.0582 | 2.5328 | 419 |
| 0.0575 | 2.5512 | 420 |
| 0.0573 | 2.5600 | 421 |
| 0.0578 | 2.5597 | 422 |
| 0.0578 | 2.5589 | 423 |
| 0.0567 | 2.5518 | 424 |
| 0.0574 | 2.5650 | 425 |
| 0.0580 | 2.5462 | 426 |
| 0.0560 | 2.5490 | 427 |
| 0.0558 | 2.5566 | 428 |
| 0.0565 | 2.5489 | 429 |
| 0.0569 | 2.5492 | 430 |
| 0.0564 | 2.5509 | 431 |
| 0.0555 | 2.5484 | 432 |
| 0.0556 | 2.5403 | 433 |
| 0.0549 | 2.5533 | 434 |
| 0.0546 | 2.5606 | 435 |
| 0.0556 | 2.5657 | 436 |
| 0.0554 | 2.5543 | 437 |
| 0.0554 | 2.5780 | 438 |
| 0.0554 | 2.5815 | 439 |
| 0.0546 | 2.5734 | 440 |
| 0.0540 | 2.5661 | 441 |
| 0.0541 | 2.5809 | 442 |
| 0.0537 | 2.5701 | 443 |
| 0.0548 | 2.5641 | 444 |
| 0.0551 | 2.5584 | 445 |
| 0.0544 | 2.5504 | 446 |
| 0.0538 | 2.5745 | 447 |
| 0.0544 | 2.5595 | 448 |
| 0.0550 | 2.5685 | 449 |
| 0.0529 | 2.5680 | 450 |
| 0.0530 | 2.5781 | 451 |
| 0.0530 | 2.5722 | 452 |
| 0.0524 | 2.5818 | 453 |
| 0.0523 | 2.5727 | 454 |
| 0.0530 | 2.5708 | 455 |
| 0.0541 | 2.5882 | 456 |
| 0.0531 | 2.5703 | 457 |
| 0.0531 | 2.5910 | 458 |
| 0.0520 | 2.5712 | 459 |
| 0.0535 | 2.5703 | 460 |
| 0.0523 | 2.5671 | 461 |
| 0.0526 | 2.5926 | 462 |
| 0.0524 | 2.5740 | 463 |
| 0.0525 | 2.5580 | 464 |
| 0.0518 | 2.5777 | 465 |
| 0.0515 | 2.5942 | 466 |
| 0.0521 | 2.5632 | 467 |
| 0.0523 | 2.5658 | 468 |
| 0.0517 | 2.5798 | 469 |
| 0.0521 | 2.5898 | 470 |
| 0.0519 | 2.5733 | 471 |
| 0.0512 | 2.6010 | 472 |
### Framework versions
- Transformers 4.38.2
- TensorFlow 2.15.0
- Datasets 2.18.0
- Tokenizers 0.15.2
|