Sentiment140_BERT_5E
This model is a fine-tuned version of bert-base-cased on the sentiment140 dataset. It achieves the following results on the evaluation set:
- Loss: 0.7061
- Accuracy: 0.82
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6882 | 0.08 | 50 | 0.6047 | 0.7 |
0.6223 | 0.16 | 100 | 0.5137 | 0.8067 |
0.5463 | 0.24 | 150 | 0.4573 | 0.8067 |
0.4922 | 0.32 | 200 | 0.4790 | 0.8 |
0.4821 | 0.4 | 250 | 0.4207 | 0.8267 |
0.4985 | 0.48 | 300 | 0.4267 | 0.8067 |
0.4455 | 0.56 | 350 | 0.4301 | 0.8133 |
0.469 | 0.64 | 400 | 0.4294 | 0.82 |
0.4906 | 0.72 | 450 | 0.4059 | 0.8067 |
0.4006 | 0.8 | 500 | 0.4181 | 0.8133 |
0.445 | 0.88 | 550 | 0.3948 | 0.8267 |
0.4302 | 0.96 | 600 | 0.3976 | 0.84 |
0.4442 | 1.04 | 650 | 0.3887 | 0.8533 |
0.3424 | 1.12 | 700 | 0.4119 | 0.8267 |
0.3589 | 1.2 | 750 | 0.4083 | 0.8533 |
0.3737 | 1.28 | 800 | 0.4253 | 0.8333 |
0.334 | 1.36 | 850 | 0.4147 | 0.86 |
0.3637 | 1.44 | 900 | 0.3926 | 0.8533 |
0.3388 | 1.52 | 950 | 0.4084 | 0.8267 |
0.3375 | 1.6 | 1000 | 0.4132 | 0.8467 |
0.3725 | 1.68 | 1050 | 0.3965 | 0.8467 |
0.3649 | 1.76 | 1100 | 0.3956 | 0.8333 |
0.3799 | 1.84 | 1150 | 0.3923 | 0.8333 |
0.3695 | 1.92 | 1200 | 0.4266 | 0.84 |
0.3233 | 2.0 | 1250 | 0.4225 | 0.8333 |
0.2313 | 2.08 | 1300 | 0.4672 | 0.8333 |
0.231 | 2.16 | 1350 | 0.5212 | 0.8133 |
0.2526 | 2.24 | 1400 | 0.5392 | 0.8067 |
0.2721 | 2.32 | 1450 | 0.4895 | 0.82 |
0.2141 | 2.4 | 1500 | 0.5258 | 0.8133 |
0.2658 | 2.48 | 1550 | 0.5046 | 0.8267 |
0.2386 | 2.56 | 1600 | 0.4873 | 0.8267 |
0.2493 | 2.64 | 1650 | 0.4950 | 0.8333 |
0.2692 | 2.72 | 1700 | 0.5080 | 0.8267 |
0.2226 | 2.8 | 1750 | 0.5016 | 0.8467 |
0.2522 | 2.88 | 1800 | 0.5068 | 0.8267 |
0.2556 | 2.96 | 1850 | 0.4937 | 0.8267 |
0.2311 | 3.04 | 1900 | 0.5103 | 0.8267 |
0.1703 | 3.12 | 1950 | 0.5680 | 0.82 |
0.1744 | 3.2 | 2000 | 0.5501 | 0.82 |
0.1667 | 3.28 | 2050 | 0.6142 | 0.82 |
0.1863 | 3.36 | 2100 | 0.6355 | 0.82 |
0.2543 | 3.44 | 2150 | 0.6000 | 0.8133 |
0.1565 | 3.52 | 2200 | 0.6618 | 0.8267 |
0.1531 | 3.6 | 2250 | 0.6595 | 0.8133 |
0.1915 | 3.68 | 2300 | 0.6647 | 0.8267 |
0.1601 | 3.76 | 2350 | 0.6729 | 0.8267 |
0.176 | 3.84 | 2400 | 0.6699 | 0.82 |
0.1815 | 3.92 | 2450 | 0.6819 | 0.8067 |
0.1987 | 4.0 | 2500 | 0.6543 | 0.8333 |
0.1236 | 4.08 | 2550 | 0.6686 | 0.8333 |
0.1599 | 4.16 | 2600 | 0.6583 | 0.8267 |
0.1256 | 4.24 | 2650 | 0.6871 | 0.8267 |
0.1291 | 4.32 | 2700 | 0.6855 | 0.82 |
0.1198 | 4.4 | 2750 | 0.6901 | 0.82 |
0.1245 | 4.48 | 2800 | 0.7152 | 0.8267 |
0.1784 | 4.56 | 2850 | 0.7053 | 0.82 |
0.1705 | 4.64 | 2900 | 0.7016 | 0.82 |
0.1265 | 4.72 | 2950 | 0.7013 | 0.82 |
0.1192 | 4.8 | 3000 | 0.7084 | 0.82 |
0.174 | 4.88 | 3050 | 0.7062 | 0.82 |
0.1328 | 4.96 | 3100 | 0.7061 | 0.82 |
Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.1
- Downloads last month
- 11
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.