File size: 2,192 Bytes
2fc4f56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
inference: false
license: cc-by-4.0
---
# Model Card
<p align="center">
<img src="./icon.png" alt="Logo" width="350">
</p>
This is Owlet-Phi-2.
Owlet is a family of lightweight but powerful multimodal models.
We provide Owlet-phi-2, which is built upon [SigLIP](https://huggingface.co/google/siglip-so400m-patch14-384) and [Phi-2](https://huggingface.co/microsoft/phi-2).
# Quickstart
Here we show a code snippet to show you how to use the model with transformers.
Before running the snippet, you need to install the following dependencies:
```shell
pip install torch transformers accelerate pillow decord
```
```python
import torch
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image
import warnings
# disable some warnings
transformers.logging.set_verbosity_error()
transformers.logging.disable_progress_bar()
warnings.filterwarnings('ignore')
# set device
device = 'cuda' # or cpu
torch.set_default_device(device)
# create model
print('Loading the model...')
model = AutoModelForCausalLM.from_pretrained(
'phronetic-ai/owlet-phi-2',
torch_dtype=torch.float16, # float32 for cpu
device_map='auto',
trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(
'phronetic-ai/owlet-phi-2',
trust_remote_code=True)
print('Model loaded. Processing the query...')
# text prompt
prompt = 'What is happening in the video?'
text = f"A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\n{prompt} ASSISTANT:"
text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')]
input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0).to(device)
# image or video file path
file_path = 'sample.mp4'
input_tensor = model.process(file_path, model.config).to(model.device, dtype=model.dtype)
# generate
output_ids = model.generate(
input_ids,
images=input_tensor,
max_new_tokens=100,
use_cache=True)[0]
print(f'Response: {tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()}')
``` |