File size: 788 Bytes
64b3ec3
9e4b5b5
 
64b3ec3
 
9e4b5b5
64b3ec3
9e4b5b5
64b3ec3
9e4b5b5
64b3ec3
9e4b5b5
64b3ec3
9e4b5b5
 
64b3ec3
9e4b5b5
64b3ec3
9e4b5b5
 
64b3ec3
 
9e4b5b5
64b3ec3
9e4b5b5
64b3ec3
9e4b5b5
64b3ec3
9e4b5b5
64b3ec3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
---
language: en
license: apache-2.0
---

# phospho-small

This is a SetFit model that can be used for Text Classification on CPU.

The model has been trained using an efficient few-shot learning technique.

## Usage

 ```python
 from setfit import SetFitModel

model = SetFitModel.from_pretrained("phospho-small-4e0ec73")

outputs = model.predict(["This is a sentence to classify", "Another sentence"])
# tensor([1, 0])
```

## References

This work was possible thanks to the SetFit library and the work of:

Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren (2022). Efficient Few-Shot Learning Without Prompts. 

ArXiv: [https://doi.org/10.48550/arxiv.2209.11055](https://doi.org/10.48550/arxiv.2209.11055)