PLB commited on
Commit
9e4b5b5
1 Parent(s): 64b3ec3

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +15 -181
README.md CHANGED
@@ -1,196 +1,30 @@
1
  ---
2
- library_name: setfit
3
- tags:
4
- - setfit
5
- - sentence-transformers
6
- - text-classification
7
- - generated_from_setfit_trainer
8
- base_model: sentence-transformers/paraphrase-mpnet-base-v2
9
- metrics:
10
- - accuracy
11
- widget:
12
- - text: How often should I rotate my tires?
13
- - text: How can I extend the life of my tires?
14
- - text: How can I tell if my tire is properly balanced?
15
- - text: Is it normal for tire pressure to decrease in cold weather?
16
- - text: How can I check if my tire pressure is correct?
17
- pipeline_tag: text-classification
18
- inference: true
19
- model-index:
20
- - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
21
- results:
22
- - task:
23
- type: text-classification
24
- name: Text Classification
25
- dataset:
26
- name: Unknown
27
- type: unknown
28
- split: test
29
- metrics:
30
- - type: accuracy
31
- value: 1.0
32
- name: Accuracy
33
  ---
34
 
35
- # SetFit with sentence-transformers/paraphrase-mpnet-base-v2
36
 
37
- This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
 
39
- The model has been trained using an efficient few-shot learning technique that involves:
40
 
41
- 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
- 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
 
44
- ## Model Details
 
45
 
46
- ### Model Description
47
- - **Model Type:** SetFit
48
- - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
49
- - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
- - **Maximum Sequence Length:** 512 tokens
51
- - **Number of Classes:** 2 classes
52
- <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
- <!-- - **Language:** Unknown -->
54
- <!-- - **License:** Unknown -->
55
 
56
- ### Model Sources
57
-
58
- - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
- - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
- - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
-
62
- ### Model Labels
63
- | Label | Examples |
64
- |:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
- | True | <ul><li>'How does tire pressure affect handling and braking?'</li><li>'How does tire pressure affect fuel economy?'</li><li>'Is it okay to slightly overinflate my tires?'</li></ul> |
66
- | False | <ul><li>'What is the best way to store tires when not in use?'</li><li>'How often should I rotate my tires?'</li><li>'How do I know if my tire has a slow leak?'</li></ul> |
67
-
68
- ## Evaluation
69
-
70
- ### Metrics
71
- | Label | Accuracy |
72
- |:--------|:---------|
73
- | **all** | 1.0 |
74
-
75
- ## Uses
76
-
77
- ### Direct Use for Inference
78
-
79
- First install the SetFit library:
80
-
81
- ```bash
82
- pip install setfit
83
- ```
84
-
85
- Then you can load this model and run inference.
86
-
87
- ```python
88
- from setfit import SetFitModel
89
-
90
- # Download from the 🤗 Hub
91
- model = SetFitModel.from_pretrained("setfit_model_id")
92
- # Run inference
93
- preds = model("How often should I rotate my tires?")
94
- ```
95
-
96
- <!--
97
- ### Downstream Use
98
-
99
- *List how someone could finetune this model on their own dataset.*
100
- -->
101
-
102
- <!--
103
- ### Out-of-Scope Use
104
-
105
- *List how the model may foreseeably be misused and address what users ought not to do with the model.*
106
- -->
107
-
108
- <!--
109
- ## Bias, Risks and Limitations
110
-
111
- *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
112
- -->
113
-
114
- <!--
115
- ### Recommendations
116
-
117
- *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
118
- -->
119
-
120
- ## Training Details
121
-
122
- ### Training Set Metrics
123
- | Training set | Min | Median | Max |
124
- |:-------------|:----|:-------|:----|
125
- | Word count | 7 | 9.875 | 13 |
126
-
127
- | Label | Training Sample Count |
128
- |:------|:----------------------|
129
- | False | 7 |
130
- | True | 9 |
131
-
132
- ### Training Hyperparameters
133
- - batch_size: (16, 16)
134
- - num_epochs: (1, 1)
135
- - max_steps: -1
136
- - sampling_strategy: oversampling
137
- - num_iterations: 20
138
- - body_learning_rate: (2e-05, 2e-05)
139
- - head_learning_rate: 2e-05
140
- - loss: CosineSimilarityLoss
141
- - distance_metric: cosine_distance
142
- - margin: 0.25
143
- - end_to_end: False
144
- - use_amp: False
145
- - warmup_proportion: 0.1
146
- - seed: 42
147
- - eval_max_steps: -1
148
- - load_best_model_at_end: False
149
-
150
- ### Training Results
151
- | Epoch | Step | Training Loss | Validation Loss |
152
- |:-----:|:----:|:-------------:|:---------------:|
153
- | 0.025 | 1 | 0.1798 | - |
154
-
155
- ### Framework Versions
156
- - Python: 3.11.6
157
- - SetFit: 1.0.3
158
- - Sentence Transformers: 2.7.0
159
- - Transformers: 4.40.1
160
- - PyTorch: 2.3.0
161
- - Datasets: 2.19.0
162
- - Tokenizers: 0.19.1
163
-
164
- ## Citation
165
-
166
- ### BibTeX
167
- ```bibtex
168
- @article{https://doi.org/10.48550/arxiv.2209.11055,
169
- doi = {10.48550/ARXIV.2209.11055},
170
- url = {https://arxiv.org/abs/2209.11055},
171
- author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
172
- keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
173
- title = {Efficient Few-Shot Learning Without Prompts},
174
- publisher = {arXiv},
175
- year = {2022},
176
- copyright = {Creative Commons Attribution 4.0 International}
177
- }
178
  ```
179
 
180
- <!--
181
- ## Glossary
182
-
183
- *Clearly define terms in order to be accessible across audiences.*
184
- -->
185
 
186
- <!--
187
- ## Model Card Authors
188
 
189
- *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
190
- -->
191
 
192
- <!--
193
- ## Model Card Contact
194
 
195
- *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
196
- -->
 
1
  ---
2
+ language: en
3
+ license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
+ # phospho-small
7
 
8
+ This is a SetFit model that can be used for Text Classification on CPU.
9
 
10
+ The model has been trained using an efficient few-shot learning technique.
11
 
12
+ ## Usage
 
13
 
14
+ ```python
15
+ from setfit import SetFitModel
16
 
17
+ model = SetFitModel.from_pretrained("phospho-small-4e0ec73")
 
 
 
 
 
 
 
 
18
 
19
+ outputs = model.predict(["This is a sentence to classify", "Another sentence"])
20
+ # tensor([1, 0])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
  ```
22
 
23
+ ## References
 
 
 
 
24
 
25
+ This work was possible thanks to the SetFit library and the work of:
 
26
 
27
+ Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren (2022). Efficient Few-Shot Learning Without Prompts.
 
28
 
29
+ ArXiv: [https://doi.org/10.48550/arxiv.2209.11055](https://doi.org/10.48550/arxiv.2209.11055)
 
30