Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,196 +1,30 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
4 |
-
- setfit
|
5 |
-
- sentence-transformers
|
6 |
-
- text-classification
|
7 |
-
- generated_from_setfit_trainer
|
8 |
-
base_model: sentence-transformers/paraphrase-mpnet-base-v2
|
9 |
-
metrics:
|
10 |
-
- accuracy
|
11 |
-
widget:
|
12 |
-
- text: How often should I rotate my tires?
|
13 |
-
- text: How can I extend the life of my tires?
|
14 |
-
- text: How can I tell if my tire is properly balanced?
|
15 |
-
- text: Is it normal for tire pressure to decrease in cold weather?
|
16 |
-
- text: How can I check if my tire pressure is correct?
|
17 |
-
pipeline_tag: text-classification
|
18 |
-
inference: true
|
19 |
-
model-index:
|
20 |
-
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
|
21 |
-
results:
|
22 |
-
- task:
|
23 |
-
type: text-classification
|
24 |
-
name: Text Classification
|
25 |
-
dataset:
|
26 |
-
name: Unknown
|
27 |
-
type: unknown
|
28 |
-
split: test
|
29 |
-
metrics:
|
30 |
-
- type: accuracy
|
31 |
-
value: 1.0
|
32 |
-
name: Accuracy
|
33 |
---
|
34 |
|
35 |
-
#
|
36 |
|
37 |
-
This is a
|
38 |
|
39 |
-
The model has been trained using an efficient few-shot learning technique
|
40 |
|
41 |
-
|
42 |
-
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
43 |
|
44 |
-
|
|
|
45 |
|
46 |
-
|
47 |
-
- **Model Type:** SetFit
|
48 |
-
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
|
49 |
-
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
50 |
-
- **Maximum Sequence Length:** 512 tokens
|
51 |
-
- **Number of Classes:** 2 classes
|
52 |
-
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
53 |
-
<!-- - **Language:** Unknown -->
|
54 |
-
<!-- - **License:** Unknown -->
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
59 |
-
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
60 |
-
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
61 |
-
|
62 |
-
### Model Labels
|
63 |
-
| Label | Examples |
|
64 |
-
|:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
65 |
-
| True | <ul><li>'How does tire pressure affect handling and braking?'</li><li>'How does tire pressure affect fuel economy?'</li><li>'Is it okay to slightly overinflate my tires?'</li></ul> |
|
66 |
-
| False | <ul><li>'What is the best way to store tires when not in use?'</li><li>'How often should I rotate my tires?'</li><li>'How do I know if my tire has a slow leak?'</li></ul> |
|
67 |
-
|
68 |
-
## Evaluation
|
69 |
-
|
70 |
-
### Metrics
|
71 |
-
| Label | Accuracy |
|
72 |
-
|:--------|:---------|
|
73 |
-
| **all** | 1.0 |
|
74 |
-
|
75 |
-
## Uses
|
76 |
-
|
77 |
-
### Direct Use for Inference
|
78 |
-
|
79 |
-
First install the SetFit library:
|
80 |
-
|
81 |
-
```bash
|
82 |
-
pip install setfit
|
83 |
-
```
|
84 |
-
|
85 |
-
Then you can load this model and run inference.
|
86 |
-
|
87 |
-
```python
|
88 |
-
from setfit import SetFitModel
|
89 |
-
|
90 |
-
# Download from the 🤗 Hub
|
91 |
-
model = SetFitModel.from_pretrained("setfit_model_id")
|
92 |
-
# Run inference
|
93 |
-
preds = model("How often should I rotate my tires?")
|
94 |
-
```
|
95 |
-
|
96 |
-
<!--
|
97 |
-
### Downstream Use
|
98 |
-
|
99 |
-
*List how someone could finetune this model on their own dataset.*
|
100 |
-
-->
|
101 |
-
|
102 |
-
<!--
|
103 |
-
### Out-of-Scope Use
|
104 |
-
|
105 |
-
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
106 |
-
-->
|
107 |
-
|
108 |
-
<!--
|
109 |
-
## Bias, Risks and Limitations
|
110 |
-
|
111 |
-
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
112 |
-
-->
|
113 |
-
|
114 |
-
<!--
|
115 |
-
### Recommendations
|
116 |
-
|
117 |
-
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
118 |
-
-->
|
119 |
-
|
120 |
-
## Training Details
|
121 |
-
|
122 |
-
### Training Set Metrics
|
123 |
-
| Training set | Min | Median | Max |
|
124 |
-
|:-------------|:----|:-------|:----|
|
125 |
-
| Word count | 7 | 9.875 | 13 |
|
126 |
-
|
127 |
-
| Label | Training Sample Count |
|
128 |
-
|:------|:----------------------|
|
129 |
-
| False | 7 |
|
130 |
-
| True | 9 |
|
131 |
-
|
132 |
-
### Training Hyperparameters
|
133 |
-
- batch_size: (16, 16)
|
134 |
-
- num_epochs: (1, 1)
|
135 |
-
- max_steps: -1
|
136 |
-
- sampling_strategy: oversampling
|
137 |
-
- num_iterations: 20
|
138 |
-
- body_learning_rate: (2e-05, 2e-05)
|
139 |
-
- head_learning_rate: 2e-05
|
140 |
-
- loss: CosineSimilarityLoss
|
141 |
-
- distance_metric: cosine_distance
|
142 |
-
- margin: 0.25
|
143 |
-
- end_to_end: False
|
144 |
-
- use_amp: False
|
145 |
-
- warmup_proportion: 0.1
|
146 |
-
- seed: 42
|
147 |
-
- eval_max_steps: -1
|
148 |
-
- load_best_model_at_end: False
|
149 |
-
|
150 |
-
### Training Results
|
151 |
-
| Epoch | Step | Training Loss | Validation Loss |
|
152 |
-
|:-----:|:----:|:-------------:|:---------------:|
|
153 |
-
| 0.025 | 1 | 0.1798 | - |
|
154 |
-
|
155 |
-
### Framework Versions
|
156 |
-
- Python: 3.11.6
|
157 |
-
- SetFit: 1.0.3
|
158 |
-
- Sentence Transformers: 2.7.0
|
159 |
-
- Transformers: 4.40.1
|
160 |
-
- PyTorch: 2.3.0
|
161 |
-
- Datasets: 2.19.0
|
162 |
-
- Tokenizers: 0.19.1
|
163 |
-
|
164 |
-
## Citation
|
165 |
-
|
166 |
-
### BibTeX
|
167 |
-
```bibtex
|
168 |
-
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
169 |
-
doi = {10.48550/ARXIV.2209.11055},
|
170 |
-
url = {https://arxiv.org/abs/2209.11055},
|
171 |
-
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
172 |
-
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
173 |
-
title = {Efficient Few-Shot Learning Without Prompts},
|
174 |
-
publisher = {arXiv},
|
175 |
-
year = {2022},
|
176 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
177 |
-
}
|
178 |
```
|
179 |
|
180 |
-
|
181 |
-
## Glossary
|
182 |
-
|
183 |
-
*Clearly define terms in order to be accessible across audiences.*
|
184 |
-
-->
|
185 |
|
186 |
-
|
187 |
-
## Model Card Authors
|
188 |
|
189 |
-
|
190 |
-
-->
|
191 |
|
192 |
-
|
193 |
-
## Model Card Contact
|
194 |
|
195 |
-
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
196 |
-
-->
|
|
|
1 |
---
|
2 |
+
language: en
|
3 |
+
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
+
# phospho-small
|
7 |
|
8 |
+
This is a SetFit model that can be used for Text Classification on CPU.
|
9 |
|
10 |
+
The model has been trained using an efficient few-shot learning technique.
|
11 |
|
12 |
+
## Usage
|
|
|
13 |
|
14 |
+
```python
|
15 |
+
from setfit import SetFitModel
|
16 |
|
17 |
+
model = SetFitModel.from_pretrained("phospho-small-4e0ec73")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
outputs = model.predict(["This is a sentence to classify", "Another sentence"])
|
20 |
+
# tensor([1, 0])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
```
|
22 |
|
23 |
+
## References
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
This work was possible thanks to the SetFit library and the work of:
|
|
|
26 |
|
27 |
+
Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren (2022). Efficient Few-Shot Learning Without Prompts.
|
|
|
28 |
|
29 |
+
ArXiv: [https://doi.org/10.48550/arxiv.2209.11055](https://doi.org/10.48550/arxiv.2209.11055)
|
|
|
30 |
|
|
|
|