File size: 4,428 Bytes
2a261b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74473b1
2a261b1
 
 
74473b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a261b1
 
 
 
 
 
 
 
 
74473b1
 
 
 
 
 
 
2a261b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "!pip install transformers --upgrade"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Create Custom Handler for Inference Endpoints\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Overwriting handler.py\n"
     ]
    }
   ],
   "source": [
    "%%writefile handler.py\n",
    "from typing import Dict, List, Any\n",
    "from transformers import DonutProcessor, VisionEncoderDecoderModel\n",
    "import torch\n",
    "\n",
    "\n",
    "# check for GPU\n",
    "device = 0 if torch.cuda.is_available() else -1\n",
    "\n",
    "\n",
    "class EndpointHandler:\n",
    "    def __init__(self, path=\"\"):\n",
    "        # load the model\n",
    "        self.processor = DonutProcessor.from_pretrained(path)\n",
    "        self.model = VisionEncoderDecoderModel.from_pretrained(path)\n",
    "        # move model to device\n",
    "        self.model.to(device)\n",
    "        self.decoder_input_ids = self.processor.tokenizer(\n",
    "            \"<s_cord-v2>\", add_special_tokens=False, return_tensors=\"pt\"\n",
    "        ).input_ids\n",
    "\n",
    "    def __call__(self, data: Any) -> List[List[Dict[str, float]]]:\n",
    "\n",
    "        inputs = data.pop(\"inputs\", data)\n",
    "\n",
    "\n",
    "        # preprocess the input\n",
    "        pixel_values = self.processor(inputs, return_tensors=\"pt\").pixel_values\n",
    "\n",
    "        # forward pass\n",
    "        outputs = self.model.generate(\n",
    "            pixel_values.to(device),\n",
    "            decoder_input_ids=self.decoder_input_ids.to(device),\n",
    "            max_length=self.model.decoder.config.max_position_embeddings,\n",
    "            early_stopping=True,\n",
    "            pad_token_id=self.processor.tokenizer.pad_token_id,\n",
    "            eos_token_id=self.processor.tokenizer.eos_token_id,\n",
    "            use_cache=True,\n",
    "            num_beams=1,\n",
    "            bad_words_ids=[[self.processor.tokenizer.unk_token_id]],\n",
    "            return_dict_in_generate=True,\n",
    "        )\n",
    "        # process output\n",
    "        prediction = self.processor.batch_decode(outputs.sequences)[0]\n",
    "        prediction = self.processor.token2json(prediction)\n",
    "\n",
    "        return prediction\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "test custom pipeline"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "from handler import EndpointHandler\n",
    "\n",
    "my_handler = EndpointHandler(\".\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'menu': [{'nm': '0571-1854 BLUS WANITA',\n",
       "   'unitprice': '@120.000',\n",
       "   'cnt': '1',\n",
       "   'price': '120,000'},\n",
       "  {'nm': '1002-0060 SHOPPING BAG', 'cnt': '1', 'price': '0'}],\n",
       " 'total': {'total_price': '120,000',\n",
       "  'changeprice': '0',\n",
       "  'creditcardprice': '120,000',\n",
       "  'menuqty_cnt': '1'}}"
      ]
     },
     "execution_count": 18,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from PIL import Image\n",
    "\n",
    "payload = {\"inputs\": Image.open(\"sample.png\").convert(\"RGB\")}\n",
    "\n",
    "my_handler(payload)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3.9.13 ('dev': conda)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.13"
  },
  "orig_nbformat": 4,
  "vscode": {
   "interpreter": {
    "hash": "f6dd96c16031089903d5a31ec148b80aeb0d39c32affb1a1080393235fbfa2fc"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}