Commit
·
2a261b1
1
Parent(s):
294e921
add hadnler
Browse files- create_handler.ipynb +152 -0
- handler.py +46 -0
- sample.png +0 -0
create_handler.ipynb
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"!pip install transformers --upgrade"
|
10 |
+
]
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"cell_type": "markdown",
|
14 |
+
"metadata": {},
|
15 |
+
"source": [
|
16 |
+
"## Create Custom Handler for Inference Endpoints\n"
|
17 |
+
]
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"cell_type": "code",
|
21 |
+
"execution_count": 17,
|
22 |
+
"metadata": {},
|
23 |
+
"outputs": [
|
24 |
+
{
|
25 |
+
"name": "stdout",
|
26 |
+
"output_type": "stream",
|
27 |
+
"text": [
|
28 |
+
"Overwriting handler.py\n"
|
29 |
+
]
|
30 |
+
}
|
31 |
+
],
|
32 |
+
"source": [
|
33 |
+
"%%writefile handler.py\n",
|
34 |
+
"from typing import Dict, List, Any\n",
|
35 |
+
"from transformers import DonutProcessor, VisionEncoderDecoderModel\n",
|
36 |
+
"import torch\n",
|
37 |
+
"\n",
|
38 |
+
"\n",
|
39 |
+
"# check for GPU\n",
|
40 |
+
"device = 0 if torch.cuda.is_available() else -1\n",
|
41 |
+
"\n",
|
42 |
+
"\n",
|
43 |
+
"class EndpointHandler:\n",
|
44 |
+
" def __init__(self, path=\"\"):\n",
|
45 |
+
" # load the model\n",
|
46 |
+
" self.processor = DonutProcessor.from_pretrained(path)\n",
|
47 |
+
" self.model = VisionEncoderDecoderModel.from_pretrained(path)\n",
|
48 |
+
" # move model to device\n",
|
49 |
+
" self.model.to(device)\n",
|
50 |
+
" self.decoder_input_ids = self.processor.tokenizer(\n",
|
51 |
+
" \"<s_cord-v2>\", add_special_tokens=False, return_tensors=\"pt\"\n",
|
52 |
+
" ).input_ids\n",
|
53 |
+
"\n",
|
54 |
+
" def __call__(self, data: Any) -> List[List[Dict[str, float]]]:\n",
|
55 |
+
"\n",
|
56 |
+
" inputs = data.pop(\"inputs\", data)\n",
|
57 |
+
"\n",
|
58 |
+
"\n",
|
59 |
+
" # preprocess the input\n",
|
60 |
+
" pixel_values = self.processor(inputs, return_tensors=\"pt\").pixel_values\n",
|
61 |
+
"\n",
|
62 |
+
" # forward pass\n",
|
63 |
+
" outputs = self.model.generate(\n",
|
64 |
+
" pixel_values.to(device),\n",
|
65 |
+
" decoder_input_ids=self.decoder_input_ids.to(device),\n",
|
66 |
+
" max_length=self.model.decoder.config.max_position_embeddings,\n",
|
67 |
+
" early_stopping=True,\n",
|
68 |
+
" pad_token_id=self.processor.tokenizer.pad_token_id,\n",
|
69 |
+
" eos_token_id=self.processor.tokenizer.eos_token_id,\n",
|
70 |
+
" use_cache=True,\n",
|
71 |
+
" num_beams=1,\n",
|
72 |
+
" bad_words_ids=[[self.processor.tokenizer.unk_token_id]],\n",
|
73 |
+
" return_dict_in_generate=True,\n",
|
74 |
+
" )\n",
|
75 |
+
" # process output\n",
|
76 |
+
" prediction = self.processor.batch_decode(outputs.sequences)[0]\n",
|
77 |
+
" prediction = self.processor.token2json(prediction)\n",
|
78 |
+
"\n",
|
79 |
+
" return prediction\n"
|
80 |
+
]
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"cell_type": "markdown",
|
84 |
+
"metadata": {},
|
85 |
+
"source": [
|
86 |
+
"test custom pipeline"
|
87 |
+
]
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"cell_type": "code",
|
91 |
+
"execution_count": 2,
|
92 |
+
"metadata": {},
|
93 |
+
"outputs": [],
|
94 |
+
"source": [
|
95 |
+
"from handler import EndpointHandler\n",
|
96 |
+
"\n",
|
97 |
+
"my_handler = EndpointHandler(\".\")"
|
98 |
+
]
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"cell_type": "code",
|
102 |
+
"execution_count": 13,
|
103 |
+
"metadata": {},
|
104 |
+
"outputs": [
|
105 |
+
{
|
106 |
+
"name": "stdout",
|
107 |
+
"output_type": "stream",
|
108 |
+
"text": [
|
109 |
+
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
|
110 |
+
"To disable this warning, you can either:\n",
|
111 |
+
"\t- Avoid using `tokenizers` before the fork if possible\n",
|
112 |
+
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
|
113 |
+
]
|
114 |
+
}
|
115 |
+
],
|
116 |
+
"source": [
|
117 |
+
"from PIL import Image\n",
|
118 |
+
"\n",
|
119 |
+
"payload = {\"inputs\": Image.open(\"sample.png\").convert(\"RGB\")}\n",
|
120 |
+
"\n",
|
121 |
+
"my_handler(payload)"
|
122 |
+
]
|
123 |
+
}
|
124 |
+
],
|
125 |
+
"metadata": {
|
126 |
+
"kernelspec": {
|
127 |
+
"display_name": "Python 3.9.13 ('dev': conda)",
|
128 |
+
"language": "python",
|
129 |
+
"name": "python3"
|
130 |
+
},
|
131 |
+
"language_info": {
|
132 |
+
"codemirror_mode": {
|
133 |
+
"name": "ipython",
|
134 |
+
"version": 3
|
135 |
+
},
|
136 |
+
"file_extension": ".py",
|
137 |
+
"mimetype": "text/x-python",
|
138 |
+
"name": "python",
|
139 |
+
"nbconvert_exporter": "python",
|
140 |
+
"pygments_lexer": "ipython3",
|
141 |
+
"version": "3.9.13"
|
142 |
+
},
|
143 |
+
"orig_nbformat": 4,
|
144 |
+
"vscode": {
|
145 |
+
"interpreter": {
|
146 |
+
"hash": "f6dd96c16031089903d5a31ec148b80aeb0d39c32affb1a1080393235fbfa2fc"
|
147 |
+
}
|
148 |
+
}
|
149 |
+
},
|
150 |
+
"nbformat": 4,
|
151 |
+
"nbformat_minor": 2
|
152 |
+
}
|
handler.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
from transformers import DonutProcessor, VisionEncoderDecoderModel
|
3 |
+
import torch
|
4 |
+
|
5 |
+
|
6 |
+
# check for GPU
|
7 |
+
device = 0 if torch.cuda.is_available() else -1
|
8 |
+
|
9 |
+
|
10 |
+
class EndpointHandler:
|
11 |
+
def __init__(self, path=""):
|
12 |
+
# load the model
|
13 |
+
self.processor = DonutProcessor.from_pretrained(path)
|
14 |
+
self.model = VisionEncoderDecoderModel.from_pretrained(path)
|
15 |
+
# move model to device
|
16 |
+
self.model.to(device)
|
17 |
+
self.decoder_input_ids = self.processor.tokenizer(
|
18 |
+
"<s_cord-v2>", add_special_tokens=False, return_tensors="pt"
|
19 |
+
).input_ids
|
20 |
+
|
21 |
+
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
22 |
+
|
23 |
+
inputs = data.pop("inputs", data)
|
24 |
+
|
25 |
+
|
26 |
+
# preprocess the input
|
27 |
+
pixel_values = self.processor(inputs, return_tensors="pt").pixel_values
|
28 |
+
|
29 |
+
# forward pass
|
30 |
+
outputs = self.model.generate(
|
31 |
+
pixel_values.to(device),
|
32 |
+
decoder_input_ids=self.decoder_input_ids.to(device),
|
33 |
+
max_length=self.model.decoder.config.max_position_embeddings,
|
34 |
+
early_stopping=True,
|
35 |
+
pad_token_id=self.processor.tokenizer.pad_token_id,
|
36 |
+
eos_token_id=self.processor.tokenizer.eos_token_id,
|
37 |
+
use_cache=True,
|
38 |
+
num_beams=1,
|
39 |
+
bad_words_ids=[[self.processor.tokenizer.unk_token_id]],
|
40 |
+
return_dict_in_generate=True,
|
41 |
+
)
|
42 |
+
# process output
|
43 |
+
prediction = self.processor.batch_decode(outputs.sequences)[0]
|
44 |
+
prediction = self.processor.token2json(prediction)
|
45 |
+
|
46 |
+
return prediction
|
sample.png
ADDED