distilroberta-base-ner-wikiann-conll2003-3-class
This model is a fine-tuned version of distilroberta-base on the wikiann and conll2003 dataset. It consists out of the classes of wikiann.
O (0), B-PER (1), I-PER (2), B-ORG (3), I-ORG (4) B-LOC (5), I-LOC (6).
eval F1-Score: 96,25 (merged dataset)
test F1-Score: 92,41 (merged dataset)
Model Usage
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
tokenizer = AutoTokenizer.from_pretrained("philschmid/distilroberta-base-ner-wikiann-conll2003-3-class")
model = AutoModelForTokenClassification.from_pretrained("philschmid/distilroberta-base-ner-wikiann-conll2003-3-class")
nlp = pipeline("ner", model=model, tokenizer=tokenizer, grouped_entities=True)
example = "My name is Philipp and live in Germany"
nlp(example)
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4.9086903597787154e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
- mixed_precision_training: Native AMP
Training results
It achieves the following results on the evaluation set:
- Loss: 0.0520
- Precision: 0.9625
- Recall: 0.9667
- F1: 0.9646
- Accuracy: 0.9914
It achieves the following results on the test set:
- Loss: 0.141
- Precision: 0.917
- Recall: 0.9313
- F1: 0.9241
- Accuracy: 0.9807
Framework versions
- Transformers 4.6.1
- Pytorch 1.8.1+cu101
- Datasets 1.6.2
- Tokenizers 0.10.3
- Downloads last month
- 11
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Evaluation results
- Precision on wikiann-conll2003self-reported0.962
- Recall on wikiann-conll2003self-reported0.967
- F1 on wikiann-conll2003self-reported0.965
- Accuracy on wikiann-conll2003self-reported0.991