|
--- |
|
license: apache-2.0 |
|
tags: |
|
- token-classification |
|
datasets: |
|
- conll2003 |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
base_model: distilroberta-base |
|
model-index: |
|
- name: distilroberta-base-ner-conll2003 |
|
results: |
|
- task: |
|
type: token-classification |
|
name: Token Classification |
|
dataset: |
|
name: conll2003 |
|
type: conll2003 |
|
metrics: |
|
- type: precision |
|
value: 0.9492923423001218 |
|
name: Precision |
|
- type: recall |
|
value: 0.9565545901020023 |
|
name: Recall |
|
- type: f1 |
|
value: 0.9529096297690173 |
|
name: F1 |
|
- type: accuracy |
|
value: 0.9883096560400111 |
|
name: Accuracy |
|
- task: |
|
type: token-classification |
|
name: Token Classification |
|
dataset: |
|
name: conll2003 |
|
type: conll2003 |
|
config: conll2003 |
|
split: validation |
|
metrics: |
|
- type: accuracy |
|
value: 0.9883249976987512 |
|
name: Accuracy |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZTEwNzFlMjk0ZDY4NTg2MGQxMDZkM2IyZjdjNDEwYmNiMWY1MWZiNzg1ZjMyZTlkYzQ0MmVmNTZkMjEyMGQ1YiIsInZlcnNpb24iOjF9.zxapWje7kbauQ5-VDNbY487JB5wkN4XqgaLwoX1cSmNfgpp-MPCjqrocxayb1kImbN8CvzOpU1aSfvRfyd5fAw |
|
- type: precision |
|
value: 0.9906910190038265 |
|
name: Precision |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMWRjMjYyOGQ2MGMwOGE1ODQyNDU1MzZiNWU4MGUzYWVlNjQ3NDhjZDRlZTE0NDlmMGJjZjliZjU2ZmFiZmZiYyIsInZlcnNpb24iOjF9.G_QY9mDkIkllmWPsgmUoVgs-R9XjfYkdJMS8hcyGM-7NXsbigUgZZnhfD0TjDak62UoEplqwSX5r0S4xKPdxBQ |
|
- type: recall |
|
value: 0.9916635820847483 |
|
name: Recall |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiODE0MDE5ZWMzNTM5MTA1NTI4YzNhNzI2NzVjODIzZWY0OWE2ODJiN2FiNmVkNGVkMTI2ODZiOGEwNTEzNzk2MCIsInZlcnNpb24iOjF9.zenVqRfs8TrKoiIu_QXQJtHyj3dEH97ZDLxUn_UJ2tdW36hpBflgKCJNBvFFkra7bS4cNRfIkwxxCUMWH1ptBg |
|
- type: f1 |
|
value: 0.9911770619696786 |
|
name: F1 |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZWZjY2NiNjZlNDFiODQ3M2JkOWJjNzRlY2FmNjMwNGFkNzFmNTBkOGQ5YTcyZjUzNjAwNDAxMThiNTE5ZThiNiIsInZlcnNpb24iOjF9.c9aD9hycCS-WBaLUb8NKzIpd2LE6xfJrhg3fL9_832RiMq5gcMs9qtarP3Jbo6WbPs_WThr_v4gn7K4Ti-0-CA |
|
- type: loss |
|
value: 0.05638007074594498 |
|
name: loss |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNGM3NTQ5ODBhMDcyNjBjMGUxMDgzYjI2NjEwNjM0MjU0MjEzMTRmODA2MjMwZWU1YTQ3OWU2YjUzNTliZTkwMSIsInZlcnNpb24iOjF9.03OwbxrdKm-vg6ia5CBYdEaSCuRbT0pLoEvwpd4NtjydVzo5wzS-pWgY6vH4PlI0ZCTBY0Po0IZSsJulWJttDg |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilroberta-base-ner-conll2003 |
|
|
|
This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the conll2003 dataset. |
|
|
|
eval F1-Score: **95,29** (CoNLL-03) |
|
test F1-Score: **90,74** (CoNLL-03) |
|
|
|
eval F1-Score: **95,29** (CoNLL++ / CoNLL-03 corrected) |
|
test F1-Score: **92,23** (CoNLL++ / CoNLL-03 corrected) |
|
|
|
|
|
## Model Usage |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForTokenClassification |
|
from transformers import pipeline |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("philschmid/distilroberta-base-ner-conll2003") |
|
model = AutoModelForTokenClassification.from_pretrained("philschmid/distilroberta-base-ner-conll2003") |
|
|
|
nlp = pipeline("ner", model=model, tokenizer=tokenizer, grouped_entities=True) |
|
example = "My name is Philipp and live in Germany" |
|
|
|
nlp(example) |
|
|
|
``` |
|
|
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 4.9902376275441704e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 6.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
#### CoNNL2003 |
|
|
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0583 |
|
- Precision: 0.9493 |
|
- Recall: 0.9566 |
|
- F1: 0.9529 |
|
- Accuracy: 0.9883 |
|
|
|
It achieves the following results on the test set: |
|
- Loss: 0.2025 |
|
- Precision: 0.8999 |
|
- Recall: 0.915 |
|
- F1: 0.9074 |
|
- Accuracy: 0.9741 |
|
|
|
#### CoNNL++ / CoNLL2003 corrected |
|
|
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0567 |
|
- Precision: 0.9493 |
|
- Recall: 0.9566 |
|
- F1: 0.9529 |
|
- Accuracy: 0.9883 |
|
|
|
It achieves the following results on the test set: |
|
- Loss: 0.1359 |
|
- Precision: 0.92 |
|
- Recall: 0.9245 |
|
- F1: 0.9223 |
|
- Accuracy: 0.9785 |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.6.1 |
|
- Pytorch 1.8.1+cu101 |
|
- Datasets 1.6.2 |
|
- Tokenizers 0.10.2 |
|
|