distilroberta-base-ner-conll2003

This model is a fine-tuned version of distilroberta-base on the conll2003 dataset.

eval F1-Score: 95,29 (CoNLL-03)
test F1-Score: 90,74 (CoNLL-03)

eval F1-Score: 95,29 (CoNLL++ / CoNLL-03 corrected)
test F1-Score: 92,23 (CoNLL++ / CoNLL-03 corrected)

Model Usage

from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline

tokenizer = AutoTokenizer.from_pretrained("philschmid/distilroberta-base-ner-conll2003")
model = AutoModelForTokenClassification.from_pretrained("philschmid/distilroberta-base-ner-conll2003")

nlp = pipeline("ner", model=model, tokenizer=tokenizer, grouped_entities=True)
example = "My name is Philipp and live in Germany"

nlp(example)

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4.9902376275441704e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6.0
  • mixed_precision_training: Native AMP

Training results

CoNNL2003

It achieves the following results on the evaluation set:

  • Loss: 0.0583
  • Precision: 0.9493
  • Recall: 0.9566
  • F1: 0.9529
  • Accuracy: 0.9883

It achieves the following results on the test set:

  • Loss: 0.2025
  • Precision: 0.8999
  • Recall: 0.915
  • F1: 0.9074
  • Accuracy: 0.9741

CoNNL++ / CoNLL2003 corrected

It achieves the following results on the evaluation set:

  • Loss: 0.0567
  • Precision: 0.9493
  • Recall: 0.9566
  • F1: 0.9529
  • Accuracy: 0.9883

It achieves the following results on the test set:

  • Loss: 0.1359
  • Precision: 0.92
  • Recall: 0.9245
  • F1: 0.9223
  • Accuracy: 0.9785

Framework versions

  • Transformers 4.6.1
  • Pytorch 1.8.1+cu101
  • Datasets 1.6.2
  • Tokenizers 0.10.2
New: fine-tune this model in a few clicks by selecting AutoNLP in the "Train" menu!
Downloads last month
203
Hosted inference API
Token Classification
This model can be loaded on the Inference API on-demand.
Evaluation results