distilroberta-base-ner-conll2003
This model is a fine-tuned version of distilroberta-base on the conll2003 dataset.
eval F1-Score: 95,29 (CoNLL-03)
test F1-Score: 90,74 (CoNLL-03)
eval F1-Score: 95,29 (CoNLL++ / CoNLL-03 corrected)
test F1-Score: 92,23 (CoNLL++ / CoNLL-03 corrected)
Model Usage
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
tokenizer = AutoTokenizer.from_pretrained("philschmid/distilroberta-base-ner-conll2003")
model = AutoModelForTokenClassification.from_pretrained("philschmid/distilroberta-base-ner-conll2003")
nlp = pipeline("ner", model=model, tokenizer=tokenizer, grouped_entities=True)
example = "My name is Philipp and live in Germany"
nlp(example)
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4.9902376275441704e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6.0
- mixed_precision_training: Native AMP
Training results
CoNNL2003
It achieves the following results on the evaluation set:
- Loss: 0.0583
- Precision: 0.9493
- Recall: 0.9566
- F1: 0.9529
- Accuracy: 0.9883
It achieves the following results on the test set:
- Loss: 0.2025
- Precision: 0.8999
- Recall: 0.915
- F1: 0.9074
- Accuracy: 0.9741
CoNNL++ / CoNLL2003 corrected
It achieves the following results on the evaluation set:
- Loss: 0.0567
- Precision: 0.9493
- Recall: 0.9566
- F1: 0.9529
- Accuracy: 0.9883
It achieves the following results on the test set:
- Loss: 0.1359
- Precision: 0.92
- Recall: 0.9245
- F1: 0.9223
- Accuracy: 0.9785
Framework versions
- Transformers 4.6.1
- Pytorch 1.8.1+cu101
- Datasets 1.6.2
- Tokenizers 0.10.2
- Downloads last month
- 87
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Dataset used to train philschmid/distilroberta-base-ner-conll2003
Evaluation results
- Precision on conll2003self-reported0.949
- Recall on conll2003self-reported0.957
- F1 on conll2003self-reported0.953
- Accuracy on conll2003self-reported0.988
- Accuracy on conll2003validation set verified0.988
- Precision on conll2003validation set verified0.991
- Recall on conll2003validation set verified0.992
- F1 on conll2003validation set verified0.991
- loss on conll2003validation set verified0.056