librarian-bot's picture
Librarian Bot: Add base_model information to model
d71a84f
|
raw
history blame
4.71 kB
metadata
license: apache-2.0
tags:
  - token-classification
datasets:
  - conll2003
metrics:
  - precision
  - recall
  - f1
  - accuracy
base_model: distilroberta-base
model-index:
  - name: distilroberta-base-ner-conll2003
    results:
      - task:
          type: token-classification
          name: Token Classification
        dataset:
          name: conll2003
          type: conll2003
        metrics:
          - type: precision
            value: 0.9492923423001218
            name: Precision
          - type: recall
            value: 0.9565545901020023
            name: Recall
          - type: f1
            value: 0.9529096297690173
            name: F1
          - type: accuracy
            value: 0.9883096560400111
            name: Accuracy
      - task:
          type: token-classification
          name: Token Classification
        dataset:
          name: conll2003
          type: conll2003
          config: conll2003
          split: validation
        metrics:
          - type: accuracy
            value: 0.9883249976987512
            name: Accuracy
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZTEwNzFlMjk0ZDY4NTg2MGQxMDZkM2IyZjdjNDEwYmNiMWY1MWZiNzg1ZjMyZTlkYzQ0MmVmNTZkMjEyMGQ1YiIsInZlcnNpb24iOjF9.zxapWje7kbauQ5-VDNbY487JB5wkN4XqgaLwoX1cSmNfgpp-MPCjqrocxayb1kImbN8CvzOpU1aSfvRfyd5fAw
          - type: precision
            value: 0.9906910190038265
            name: Precision
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMWRjMjYyOGQ2MGMwOGE1ODQyNDU1MzZiNWU4MGUzYWVlNjQ3NDhjZDRlZTE0NDlmMGJjZjliZjU2ZmFiZmZiYyIsInZlcnNpb24iOjF9.G_QY9mDkIkllmWPsgmUoVgs-R9XjfYkdJMS8hcyGM-7NXsbigUgZZnhfD0TjDak62UoEplqwSX5r0S4xKPdxBQ
          - type: recall
            value: 0.9916635820847483
            name: Recall
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiODE0MDE5ZWMzNTM5MTA1NTI4YzNhNzI2NzVjODIzZWY0OWE2ODJiN2FiNmVkNGVkMTI2ODZiOGEwNTEzNzk2MCIsInZlcnNpb24iOjF9.zenVqRfs8TrKoiIu_QXQJtHyj3dEH97ZDLxUn_UJ2tdW36hpBflgKCJNBvFFkra7bS4cNRfIkwxxCUMWH1ptBg
          - type: f1
            value: 0.9911770619696786
            name: F1
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZWZjY2NiNjZlNDFiODQ3M2JkOWJjNzRlY2FmNjMwNGFkNzFmNTBkOGQ5YTcyZjUzNjAwNDAxMThiNTE5ZThiNiIsInZlcnNpb24iOjF9.c9aD9hycCS-WBaLUb8NKzIpd2LE6xfJrhg3fL9_832RiMq5gcMs9qtarP3Jbo6WbPs_WThr_v4gn7K4Ti-0-CA
          - type: loss
            value: 0.05638007074594498
            name: loss
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNGM3NTQ5ODBhMDcyNjBjMGUxMDgzYjI2NjEwNjM0MjU0MjEzMTRmODA2MjMwZWU1YTQ3OWU2YjUzNTliZTkwMSIsInZlcnNpb24iOjF9.03OwbxrdKm-vg6ia5CBYdEaSCuRbT0pLoEvwpd4NtjydVzo5wzS-pWgY6vH4PlI0ZCTBY0Po0IZSsJulWJttDg

distilroberta-base-ner-conll2003

This model is a fine-tuned version of distilroberta-base on the conll2003 dataset.

eval F1-Score: 95,29 (CoNLL-03)
test F1-Score: 90,74 (CoNLL-03)

eval F1-Score: 95,29 (CoNLL++ / CoNLL-03 corrected)
test F1-Score: 92,23 (CoNLL++ / CoNLL-03 corrected)

Model Usage

from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline

tokenizer = AutoTokenizer.from_pretrained("philschmid/distilroberta-base-ner-conll2003")
model = AutoModelForTokenClassification.from_pretrained("philschmid/distilroberta-base-ner-conll2003")

nlp = pipeline("ner", model=model, tokenizer=tokenizer, grouped_entities=True)
example = "My name is Philipp and live in Germany"

nlp(example)

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4.9902376275441704e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6.0
  • mixed_precision_training: Native AMP

Training results

CoNNL2003

It achieves the following results on the evaluation set:

  • Loss: 0.0583
  • Precision: 0.9493
  • Recall: 0.9566
  • F1: 0.9529
  • Accuracy: 0.9883

It achieves the following results on the test set:

  • Loss: 0.2025
  • Precision: 0.8999
  • Recall: 0.915
  • F1: 0.9074
  • Accuracy: 0.9741

CoNNL++ / CoNLL2003 corrected

It achieves the following results on the evaluation set:

  • Loss: 0.0567
  • Precision: 0.9493
  • Recall: 0.9566
  • F1: 0.9529
  • Accuracy: 0.9883

It achieves the following results on the test set:

  • Loss: 0.1359
  • Precision: 0.92
  • Recall: 0.9245
  • F1: 0.9223
  • Accuracy: 0.9785

Framework versions

  • Transformers 4.6.1
  • Pytorch 1.8.1+cu101
  • Datasets 1.6.2
  • Tokenizers 0.10.2