Edit model card


This model was trained using Amazon SageMaker and the new Hugging Face Deep Learning container.

You can find the notebook here and the referring blog post here.

For more information look at:


    "dataset_name": "samsum",
    "do_eval": true,
    "do_train": true,
    "fp16": true,
    "learning_rate": 5e-05,
    "model_name_or_path": "facebook/bart-base",
    "num_train_epochs": 3,
    "output_dir": "/opt/ml/model",
    "per_device_eval_batch_size": 8,
    "per_device_train_batch_size": 8,
    "seed": 7

Train results

key value
epoch 3
init_mem_cpu_alloc_delta 180190
init_mem_cpu_peaked_delta 18282
init_mem_gpu_alloc_delta 558658048
init_mem_gpu_peaked_delta 0
train_mem_cpu_alloc_delta 6658519
train_mem_cpu_peaked_delta 642937
train_mem_gpu_alloc_delta 2267624448
train_mem_gpu_peaked_delta 10355728896
train_runtime 98.4931
train_samples 14732
train_samples_per_second 3.533

Eval results

key value
epoch 3
eval_loss 1.5356481075286865
eval_mem_cpu_alloc_delta 659047
eval_mem_cpu_peaked_delta 18254
eval_mem_gpu_alloc_delta 0
eval_mem_gpu_peaked_delta 300285440
eval_runtime 0.3116
eval_samples 818
eval_samples_per_second 2625.337


from transformers import pipeline
summarizer = pipeline("summarization", model="philschmid/bart-base-samsum")

conversation = '''Jeff: Can I train a πŸ€— Transformers model on Amazon SageMaker? 
Philipp: Sure you can use the new Hugging Face Deep Learning Container. 
Jeff: ok.
Jeff: and how can I get started? 
Jeff: where can I find documentation? 
Philipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face                                           
Downloads last month

Dataset used to train philschmid/bart-base-samsum

Evaluation results