YAML Metadata
Error:
"tags" must be an array
BERT-tweet-eval-emotion
trained using autoNLP
- Problem type: Multi-class Classification
Validation Metrics
- Loss: 0.5408923625946045
- Accuracy: 0.8099929627023223
- Macro F1: 0.7737195387641751
- Micro F1: 0.8099929627023222
- Weighted F1: 0.8063100677512649
- Macro Precision: 0.8083955817268176
- Micro Precision: 0.8099929627023223
- Weighted Precision: 0.8104009668394634
- Macro Recall: 0.7529197049888299
- Micro Recall: 0.8099929627023223
- Weighted Recall: 0.8099929627023223
Usage
You can use cURL to access this model:
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "Worry is a down payment on a problem you may never have'. Joyce Meyer. #motivation #leadership #worry"}' https://api-inference.huggingface.co/models/philschmid/BERT-tweet-eval-emotion
Or Python API:
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
model_id = 'philschmid/BERT-tweet-eval-emotion'
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForSequenceClassification.from_pretrained(model_id)
classifier = pipeline('text-classification', tokenizer=tokenizer, model=model)
classifier("Worry is a down payment on a problem you may never have'. Joyce Meyer. #motivation #leadership #worry")
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Dataset used to train philschmid/BERT-tweet-eval-emotion
Evaluation results
- Accuracy on tweetevalself-reported81.000
- Macro F1 on tweetevalself-reported77.370
- Weighted F1 on tweetevalself-reported80.630