YAML Metadata
Error:
"tags" must be an array
BERT-tweet-eval-emotion
trained using autoNLP
- Problem type: Multi-class Classification
Validation Metrics
- Loss: 0.5408923625946045
- Accuracy: 0.8099929627023223
- Macro F1: 0.7737195387641751
- Micro F1: 0.8099929627023222
- Weighted F1: 0.8063100677512649
- Macro Precision: 0.8083955817268176
- Micro Precision: 0.8099929627023223
- Weighted Precision: 0.8104009668394634
- Macro Recall: 0.7529197049888299
- Micro Recall: 0.8099929627023223
- Weighted Recall: 0.8099929627023223
Usage
You can use cURL to access this model:
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "Worry is a down payment on a problem you may never have'. Joyce Meyer. #motivation #leadership #worry"}' https://api-inference.huggingface.co/models/philschmid/BERT-tweet-eval-emotion
Or Python API:
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
model_id = 'philschmid/BERT-tweet-eval-emotion'
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForSequenceClassification.from_pretrained(model_id)
classifier = pipeline('text-classification', tokenizer=tokenizer, model=model)
classifier("Worry is a down payment on a problem you may never have'. Joyce Meyer. #motivation #leadership #worry")
- Downloads last month
- 11
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Dataset used to train philschmid/BERT-tweet-eval-emotion
Evaluation results
- Accuracy on tweetevalself-reported81.000
- Macro F1 on tweetevalself-reported77.370
- Weighted F1 on tweetevalself-reported80.630