YAML Metadata Error: "tags" must be an array

BERT-tweet-eval-emotion trained using autoNLP

  • Problem type: Multi-class Classification

Validation Metrics

  • Loss: 0.5408923625946045
  • Accuracy: 0.8099929627023223
  • Macro F1: 0.7737195387641751
  • Micro F1: 0.8099929627023222
  • Weighted F1: 0.8063100677512649
  • Macro Precision: 0.8083955817268176
  • Micro Precision: 0.8099929627023223
  • Weighted Precision: 0.8104009668394634
  • Macro Recall: 0.7529197049888299
  • Micro Recall: 0.8099929627023223
  • Weighted Recall: 0.8099929627023223

Usage

You can use cURL to access this model:

$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "Worry is a down payment on a problem you may never have'. Joyce Meyer.  #motivation #leadership #worry"}' https://api-inference.huggingface.co/models/philschmid/BERT-tweet-eval-emotion

Or Python API:

from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline

model_id = 'philschmid/BERT-tweet-eval-emotion'

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForSequenceClassification.from_pretrained(model_id)

classifier = pipeline('text-classification', tokenizer=tokenizer, model=model)
classifier("Worry is a down payment on a problem you may never have'. Joyce Meyer.  #motivation #leadership #worry")
Downloads last month
40
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train philschmid/BERT-tweet-eval-emotion

Evaluation results