YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Training Details
Training Data
- Open-access chest X-ray datasets (e.g., NIH ChestX-ray14, CheXpert).
- Data preprocessing: normalization, resizing, augmentation.
Training Procedure
- Stage 1: EfficientNet-B0 for coarse classification (normal vs abnormal).
- Stage 2: EfficientNet-B2 for expert-level multi-label disease classification.
- Grad-CAM integrated for visual interpretability.
Training Hyperparameters
- Mixed precision (fp16)
- Optimizer: AdamW
- Learning rate scheduler: CosineAnnealing
- Loss: Weighted BCE with logits
Evaluation
Testing Data
- Evaluated on public benchmark datasets (CheXpert, NIH ChestX-ray14).
Metrics
- AUROC (per-class and mean)
- F1-score
- Sensitivity/Specificity
Results
- Mean AUROC โ 0.85โ0.90 (depending on dataset and task)
- Grad-CAM heatmaps align with radiologically relevant regions
Model Examination
- Grad-CAM visualizations available for each prediction
- Two-stage pipeline mirrors clinical workflow
Environmental Impact
- Hardware Type: NVIDIA Tesla V100 (cloud GPU)
- Hours used: ~60 GPU hours
- Cloud Provider: Google Cloud
- Compute Region: US-central
- Carbon Emitted: Estimated ~25 kg CO2eq
Technical Specifications
Model Architecture
- Stage 1: EfficientNet-B0
- Stage 2: EfficientNet-B2
- Hierarchical classification pipeline
- Grad-CAM interpretability module
Compute Infrastructure
- Hardware: NVIDIA V100 (16GB)
- Software: PyTorch, Hugging Face Transformers, CUDA 11.8
Citation
BibTeX
@article{indabax2025cxrnet,
title={Hierarchical CXR-Net: A Two-Stage Framework for Efficient and Interpretable Chest X-Ray Diagnosis},
author={Ssempeebwa, Phillip and IndabaX Uganda AI Research Lab},
year={2025},
journal={Digital Health Africa 2025 Poster Proceedings}
}
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support