kantinewinkel-repo / README.md
pbeyens's picture
Training in progress, step 200
f90efff
|
raw
history blame
4.24 kB
metadata
license: mit
tags:
  - generated_from_trainer
datasets:
  - kantinewinkel
model-index:
  - name: kantinewinkel-repo
    results: []

kantinewinkel-repo

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on the kantinewinkel dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0083
  • Cash: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5}
  • Date: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 44}
  • Subtotal: {'precision': 0.95, 'recall': 1.0, 'f1': 0.9743589743589743, 'number': 19}
  • Total: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19}
  • Overall Precision: 0.9886
  • Overall Recall: 1.0
  • Overall F1: 0.9943
  • Overall Accuracy: 0.9991

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cash Date Subtotal Total Overall Precision Overall Recall Overall F1 Overall Accuracy
0.0476 8.7 200 0.0083 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 44} {'precision': 0.95, 'recall': 1.0, 'f1': 0.9743589743589743, 'number': 19} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} 0.9886 1.0 0.9943 0.9991
0.0003 17.39 400 0.0092 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 44} {'precision': 0.95, 'recall': 1.0, 'f1': 0.9743589743589743, 'number': 19} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} 0.9886 1.0 0.9943 0.9991
0.0005 26.09 600 0.0080 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 44} {'precision': 0.95, 'recall': 1.0, 'f1': 0.9743589743589743, 'number': 19} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} 0.9886 1.0 0.9943 0.9991
0.0 34.78 800 0.0082 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 44} {'precision': 0.95, 'recall': 1.0, 'f1': 0.9743589743589743, 'number': 19} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} 0.9886 1.0 0.9943 0.9991
0.0001 43.48 1000 0.0081 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 44} {'precision': 0.95, 'recall': 1.0, 'f1': 0.9743589743589743, 'number': 19} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} 0.9886 1.0 0.9943 0.9991

Framework versions

  • Transformers 4.29.2
  • Pytorch 1.13.1
  • Datasets 2.12.0
  • Tokenizers 0.13.2