|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- kantinewinkel |
|
model-index: |
|
- name: kantinewinkel-repo |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# kantinewinkel-repo |
|
|
|
This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the kantinewinkel dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0083 |
|
- Cash: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5} |
|
- Date: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 44} |
|
- Subtotal: {'precision': 0.95, 'recall': 1.0, 'f1': 0.9743589743589743, 'number': 19} |
|
- Total: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} |
|
- Overall Precision: 0.9886 |
|
- Overall Recall: 1.0 |
|
- Overall F1: 0.9943 |
|
- Overall Accuracy: 0.9991 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 1000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Cash | Date | Subtotal | Total | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------------------------------------------------------:|:----------------------------------------------------------:|:--------------------------------------------------------------------------:|:----------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| |
|
| 0.0476 | 8.7 | 200 | 0.0083 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 44} | {'precision': 0.95, 'recall': 1.0, 'f1': 0.9743589743589743, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | 0.9886 | 1.0 | 0.9943 | 0.9991 | |
|
| 0.0003 | 17.39 | 400 | 0.0092 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 44} | {'precision': 0.95, 'recall': 1.0, 'f1': 0.9743589743589743, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | 0.9886 | 1.0 | 0.9943 | 0.9991 | |
|
| 0.0005 | 26.09 | 600 | 0.0080 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 44} | {'precision': 0.95, 'recall': 1.0, 'f1': 0.9743589743589743, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | 0.9886 | 1.0 | 0.9943 | 0.9991 | |
|
| 0.0 | 34.78 | 800 | 0.0082 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 44} | {'precision': 0.95, 'recall': 1.0, 'f1': 0.9743589743589743, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | 0.9886 | 1.0 | 0.9943 | 0.9991 | |
|
| 0.0001 | 43.48 | 1000 | 0.0081 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 44} | {'precision': 0.95, 'recall': 1.0, 'f1': 0.9743589743589743, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | 0.9886 | 1.0 | 0.9943 | 0.9991 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.29.2 |
|
- Pytorch 1.13.1 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.2 |
|
|