cord-repo / README.md
pbeyens's picture
Training in progress, step 200
0fe72c8
|
raw
history blame
9.75 kB
metadata
license: mit
tags:
  - generated_from_trainer
datasets:
  - cord
model-index:
  - name: cord-repo
    results: []

cord-repo

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on the cord dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2317
  • Menu.cnt: {'precision': 0.9521739130434783, 'recall': 0.9733333333333334, 'f1': 0.9626373626373628, 'number': 225}
  • Menu.discountprice: {'precision': 0.6, 'recall': 0.6, 'f1': 0.6, 'number': 10}
  • Menu.nm: {'precision': 0.9011406844106464, 'recall': 0.9404761904761905, 'f1': 0.920388349514563, 'number': 252}
  • Menu.num: {'precision': 1.0, 'recall': 0.8181818181818182, 'f1': 0.9, 'number': 11}
  • Menu.price: {'precision': 0.9565217391304348, 'recall': 0.9758064516129032, 'f1': 0.9660678642714571, 'number': 248}
  • Menu.sub Cnt: {'precision': 0.875, 'recall': 0.8235294117647058, 'f1': 0.8484848484848485, 'number': 17}
  • Menu.sub Nm: {'precision': 0.6666666666666666, 'recall': 0.8125, 'f1': 0.7323943661971831, 'number': 32}
  • Menu.sub Price: {'precision': 1.0, 'recall': 0.7, 'f1': 0.8235294117647058, 'number': 20}
  • Menu.unitprice: {'precision': 0.9253731343283582, 'recall': 0.9117647058823529, 'f1': 0.9185185185185185, 'number': 68}
  • Sub Total.discount Price: {'precision': 0.8571428571428571, 'recall': 0.8571428571428571, 'f1': 0.8571428571428571, 'number': 7}
  • Sub Total.etc: {'precision': 1.0, 'recall': 0.75, 'f1': 0.8571428571428571, 'number': 8}
  • Sub Total.service Price: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 12}
  • Sub Total.subtotal Price: {'precision': 0.8205128205128205, 'recall': 0.927536231884058, 'f1': 0.870748299319728, 'number': 69}
  • Sub Total.tax Price: {'precision': 1.0, 'recall': 0.9555555555555556, 'f1': 0.9772727272727273, 'number': 45}
  • Total.cashprice: {'precision': 0.9393939393939394, 'recall': 0.8732394366197183, 'f1': 0.9051094890510948, 'number': 71}
  • Total.changeprice: {'precision': 0.9661016949152542, 'recall': 0.95, 'f1': 0.957983193277311, 'number': 60}
  • Total.creditcardprice: {'precision': 0.8235294117647058, 'recall': 0.875, 'f1': 0.8484848484848485, 'number': 16}
  • Total.emoneyprice: {'precision': 0.5, 'recall': 0.5, 'f1': 0.5, 'number': 2}
  • Total.menuqty Cnt: {'precision': 0.71875, 'recall': 0.7666666666666667, 'f1': 0.7419354838709677, 'number': 30}
  • Total.menutype Cnt: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8}
  • Total.total Etc: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4}
  • Total.total Price: {'precision': 0.9019607843137255, 'recall': 0.9292929292929293, 'f1': 0.9154228855721392, 'number': 99}
  • Overall Precision: 0.9125
  • Overall Recall: 0.9201
  • Overall F1: 0.9163
  • Overall Accuracy: 0.9355

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 300
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Menu.cnt Menu.discountprice Menu.nm Menu.num Menu.price Menu.sub Cnt Menu.sub Nm Menu.sub Price Menu.unitprice Sub Total.discount Price Sub Total.etc Sub Total.service Price Sub Total.subtotal Price Sub Total.tax Price Total.cashprice Total.changeprice Total.creditcardprice Total.emoneyprice Total.menuqty Cnt Total.menutype Cnt Total.total Etc Total.total Price Overall Precision Overall Recall Overall F1 Overall Accuracy
0.6711 2.0 200 0.2317 {'precision': 0.9521739130434783, 'recall': 0.9733333333333334, 'f1': 0.9626373626373628, 'number': 225} {'precision': 0.6, 'recall': 0.6, 'f1': 0.6, 'number': 10} {'precision': 0.9011406844106464, 'recall': 0.9404761904761905, 'f1': 0.920388349514563, 'number': 252} {'precision': 1.0, 'recall': 0.8181818181818182, 'f1': 0.9, 'number': 11} {'precision': 0.9565217391304348, 'recall': 0.9758064516129032, 'f1': 0.9660678642714571, 'number': 248} {'precision': 0.875, 'recall': 0.8235294117647058, 'f1': 0.8484848484848485, 'number': 17} {'precision': 0.6666666666666666, 'recall': 0.8125, 'f1': 0.7323943661971831, 'number': 32} {'precision': 1.0, 'recall': 0.7, 'f1': 0.8235294117647058, 'number': 20} {'precision': 0.9253731343283582, 'recall': 0.9117647058823529, 'f1': 0.9185185185185185, 'number': 68} {'precision': 0.8571428571428571, 'recall': 0.8571428571428571, 'f1': 0.8571428571428571, 'number': 7} {'precision': 1.0, 'recall': 0.75, 'f1': 0.8571428571428571, 'number': 8} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 12} {'precision': 0.8205128205128205, 'recall': 0.927536231884058, 'f1': 0.870748299319728, 'number': 69} {'precision': 1.0, 'recall': 0.9555555555555556, 'f1': 0.9772727272727273, 'number': 45} {'precision': 0.9393939393939394, 'recall': 0.8732394366197183, 'f1': 0.9051094890510948, 'number': 71} {'precision': 0.9661016949152542, 'recall': 0.95, 'f1': 0.957983193277311, 'number': 60} {'precision': 0.8235294117647058, 'recall': 0.875, 'f1': 0.8484848484848485, 'number': 16} {'precision': 0.5, 'recall': 0.5, 'f1': 0.5, 'number': 2} {'precision': 0.71875, 'recall': 0.7666666666666667, 'f1': 0.7419354838709677, 'number': 30} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} {'precision': 0.9019607843137255, 'recall': 0.9292929292929293, 'f1': 0.9154228855721392, 'number': 99} 0.9125 0.9201 0.9163 0.9355

Framework versions

  • Transformers 4.29.2
  • Pytorch 1.13.1
  • Datasets 2.12.0
  • Tokenizers 0.13.2