pbeyens commited on
Commit
0fe72c8
·
1 Parent(s): 8c4278a

Training in progress, step 200

Browse files
README.md CHANGED
@@ -16,33 +16,33 @@ should probably proofread and complete it, then remove this comment. -->
16
 
17
  This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the cord dataset.
18
  It achieves the following results on the evaluation set:
19
- - Loss: 0.1915
20
- - Menu.cnt: {'precision': 0.9775784753363229, 'recall': 0.9688888888888889, 'f1': 0.9732142857142856, 'number': 225}
21
- - Menu.discountprice: {'precision': 0.3888888888888889, 'recall': 0.7, 'f1': 0.5, 'number': 10}
22
- - Menu.nm: {'precision': 0.9108527131782945, 'recall': 0.9325396825396826, 'f1': 0.9215686274509803, 'number': 252}
23
- - Menu.num: {'precision': 0.9166666666666666, 'recall': 1.0, 'f1': 0.9565217391304348, 'number': 11}
24
- - Menu.price: {'precision': 0.9723320158102767, 'recall': 0.9919354838709677, 'f1': 0.9820359281437127, 'number': 248}
25
- - Menu.sub Cnt: {'precision': 0.8421052631578947, 'recall': 0.9411764705882353, 'f1': 0.8888888888888888, 'number': 17}
26
- - Menu.sub Nm: {'precision': 0.6842105263157895, 'recall': 0.8125, 'f1': 0.742857142857143, 'number': 32}
27
- - Menu.sub Price: {'precision': 0.8636363636363636, 'recall': 0.95, 'f1': 0.9047619047619048, 'number': 20}
28
- - Menu.unitprice: {'precision': 0.9848484848484849, 'recall': 0.9558823529411765, 'f1': 0.9701492537313432, 'number': 68}
29
- - Sub Total.discount Price: {'precision': 0.7777777777777778, 'recall': 1.0, 'f1': 0.8750000000000001, 'number': 7}
30
- - Sub Total.etc: {'precision': 0.75, 'recall': 0.75, 'f1': 0.75, 'number': 8}
31
  - Sub Total.service Price: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 12}
32
- - Sub Total.subtotal Price: {'precision': 0.8947368421052632, 'recall': 0.9855072463768116, 'f1': 0.9379310344827586, 'number': 69}
33
- - Sub Total.tax Price: {'precision': 0.9545454545454546, 'recall': 0.9333333333333333, 'f1': 0.9438202247191012, 'number': 45}
34
  - Total.cashprice: {'precision': 0.9393939393939394, 'recall': 0.8732394366197183, 'f1': 0.9051094890510948, 'number': 71}
35
- - Total.changeprice: {'precision': 0.9672131147540983, 'recall': 0.9833333333333333, 'f1': 0.9752066115702478, 'number': 60}
36
- - Total.creditcardprice: {'precision': 0.9333333333333333, 'recall': 0.875, 'f1': 0.9032258064516129, 'number': 16}
37
- - Total.emoneyprice: {'precision': 0.25, 'recall': 0.5, 'f1': 0.3333333333333333, 'number': 2}
38
- - Total.menuqty Cnt: {'precision': 0.9032258064516129, 'recall': 0.9333333333333333, 'f1': 0.9180327868852459, 'number': 30}
39
- - Total.menutype Cnt: {'precision': 0.75, 'recall': 0.75, 'f1': 0.75, 'number': 8}
40
  - Total.total Etc: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4}
41
- - Total.total Price: {'precision': 0.9191919191919192, 'recall': 0.9191919191919192, 'f1': 0.9191919191919192, 'number': 99}
42
- - Overall Precision: 0.9212
43
- - Overall Recall: 0.9429
44
- - Overall F1: 0.9319
45
- - Overall Accuracy: 0.9542
46
 
47
  ## Model description
48
 
@@ -67,15 +67,14 @@ The following hyperparameters were used during training:
67
  - seed: 42
68
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
69
  - lr_scheduler_type: linear
70
- - training_steps: 500
71
  - mixed_precision_training: Native AMP
72
 
73
  ### Training results
74
 
75
- | Training Loss | Epoch | Step | Validation Loss | Menu.cnt | Menu.discountprice | Menu.nm | Menu.num | Menu.price | Menu.sub Cnt | Menu.sub Nm | Menu.sub Price | Menu.unitprice | Sub Total.discount Price | Sub Total.etc | Sub Total.service Price | Sub Total.subtotal Price | Sub Total.tax Price | Total.cashprice | Total.changeprice | Total.creditcardprice | Total.emoneyprice | Total.menuqty Cnt | Total.menutype Cnt | Total.total Etc | Total.total Price | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
76
- |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------:|:---------------------------------------------------------------:|:----------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------:|:---------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
77
- | 0.6695 | 2.0 | 200 | 0.2561 | {'precision': 0.9313304721030042, 'recall': 0.9644444444444444, 'f1': 0.947598253275109, 'number': 225} | {'precision': 0.625, 'recall': 0.5, 'f1': 0.5555555555555556, 'number': 10} | {'precision': 0.8830188679245283, 'recall': 0.9285714285714286, 'f1': 0.9052224371373309, 'number': 252} | {'precision': 0.875, 'recall': 0.6363636363636364, 'f1': 0.7368421052631579, 'number': 11} | {'precision': 0.9644268774703557, 'recall': 0.9838709677419355, 'f1': 0.9740518962075848, 'number': 248} | {'precision': 0.9285714285714286, 'recall': 0.7647058823529411, 'f1': 0.8387096774193549, 'number': 17} | {'precision': 0.7333333333333333, 'recall': 0.6875, 'f1': 0.7096774193548386, 'number': 32} | {'precision': 1.0, 'recall': 0.85, 'f1': 0.9189189189189189, 'number': 20} | {'precision': 0.8955223880597015, 'recall': 0.8823529411764706, 'f1': 0.888888888888889, 'number': 68} | {'precision': 0.875, 'recall': 1.0, 'f1': 0.9333333333333333, 'number': 7} | {'precision': 0.625, 'recall': 0.625, 'f1': 0.625, 'number': 8} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 12} | {'precision': 0.8552631578947368, 'recall': 0.9420289855072463, 'f1': 0.8965517241379309, 'number': 69} | {'precision': 1.0, 'recall': 0.9555555555555556, 'f1': 0.9772727272727273, 'number': 45} | {'precision': 0.9375, 'recall': 0.8450704225352113, 'f1': 0.8888888888888888, 'number': 71} | {'precision': 0.9152542372881356, 'recall': 0.9, 'f1': 0.9075630252100839, 'number': 60} | {'precision': 0.875, 'recall': 0.875, 'f1': 0.875, 'number': 16} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 2} | {'precision': 0.7419354838709677, 'recall': 0.7666666666666667, 'f1': 0.7540983606557377, 'number': 30} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.9081632653061225, 'recall': 0.898989898989899, 'f1': 0.9035532994923858, 'number': 99} | 0.9086 | 0.9079 | 0.9083 | 0.9343 |
78
- | 0.129 | 4.0 | 400 | 0.1915 | {'precision': 0.9775784753363229, 'recall': 0.9688888888888889, 'f1': 0.9732142857142856, 'number': 225} | {'precision': 0.3888888888888889, 'recall': 0.7, 'f1': 0.5, 'number': 10} | {'precision': 0.9108527131782945, 'recall': 0.9325396825396826, 'f1': 0.9215686274509803, 'number': 252} | {'precision': 0.9166666666666666, 'recall': 1.0, 'f1': 0.9565217391304348, 'number': 11} | {'precision': 0.9723320158102767, 'recall': 0.9919354838709677, 'f1': 0.9820359281437127, 'number': 248} | {'precision': 0.8421052631578947, 'recall': 0.9411764705882353, 'f1': 0.8888888888888888, 'number': 17} | {'precision': 0.6842105263157895, 'recall': 0.8125, 'f1': 0.742857142857143, 'number': 32} | {'precision': 0.8636363636363636, 'recall': 0.95, 'f1': 0.9047619047619048, 'number': 20} | {'precision': 0.9848484848484849, 'recall': 0.9558823529411765, 'f1': 0.9701492537313432, 'number': 68} | {'precision': 0.7777777777777778, 'recall': 1.0, 'f1': 0.8750000000000001, 'number': 7} | {'precision': 0.75, 'recall': 0.75, 'f1': 0.75, 'number': 8} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 12} | {'precision': 0.8947368421052632, 'recall': 0.9855072463768116, 'f1': 0.9379310344827586, 'number': 69} | {'precision': 0.9545454545454546, 'recall': 0.9333333333333333, 'f1': 0.9438202247191012, 'number': 45} | {'precision': 0.9393939393939394, 'recall': 0.8732394366197183, 'f1': 0.9051094890510948, 'number': 71} | {'precision': 0.9672131147540983, 'recall': 0.9833333333333333, 'f1': 0.9752066115702478, 'number': 60} | {'precision': 0.9333333333333333, 'recall': 0.875, 'f1': 0.9032258064516129, 'number': 16} | {'precision': 0.25, 'recall': 0.5, 'f1': 0.3333333333333333, 'number': 2} | {'precision': 0.9032258064516129, 'recall': 0.9333333333333333, 'f1': 0.9180327868852459, 'number': 30} | {'precision': 0.75, 'recall': 0.75, 'f1': 0.75, 'number': 8} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.9191919191919192, 'recall': 0.9191919191919192, 'f1': 0.9191919191919192, 'number': 99} | 0.9212 | 0.9429 | 0.9319 | 0.9542 |
79
 
80
 
81
  ### Framework versions
 
16
 
17
  This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the cord dataset.
18
  It achieves the following results on the evaluation set:
19
+ - Loss: 0.2317
20
+ - Menu.cnt: {'precision': 0.9521739130434783, 'recall': 0.9733333333333334, 'f1': 0.9626373626373628, 'number': 225}
21
+ - Menu.discountprice: {'precision': 0.6, 'recall': 0.6, 'f1': 0.6, 'number': 10}
22
+ - Menu.nm: {'precision': 0.9011406844106464, 'recall': 0.9404761904761905, 'f1': 0.920388349514563, 'number': 252}
23
+ - Menu.num: {'precision': 1.0, 'recall': 0.8181818181818182, 'f1': 0.9, 'number': 11}
24
+ - Menu.price: {'precision': 0.9565217391304348, 'recall': 0.9758064516129032, 'f1': 0.9660678642714571, 'number': 248}
25
+ - Menu.sub Cnt: {'precision': 0.875, 'recall': 0.8235294117647058, 'f1': 0.8484848484848485, 'number': 17}
26
+ - Menu.sub Nm: {'precision': 0.6666666666666666, 'recall': 0.8125, 'f1': 0.7323943661971831, 'number': 32}
27
+ - Menu.sub Price: {'precision': 1.0, 'recall': 0.7, 'f1': 0.8235294117647058, 'number': 20}
28
+ - Menu.unitprice: {'precision': 0.9253731343283582, 'recall': 0.9117647058823529, 'f1': 0.9185185185185185, 'number': 68}
29
+ - Sub Total.discount Price: {'precision': 0.8571428571428571, 'recall': 0.8571428571428571, 'f1': 0.8571428571428571, 'number': 7}
30
+ - Sub Total.etc: {'precision': 1.0, 'recall': 0.75, 'f1': 0.8571428571428571, 'number': 8}
31
  - Sub Total.service Price: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 12}
32
+ - Sub Total.subtotal Price: {'precision': 0.8205128205128205, 'recall': 0.927536231884058, 'f1': 0.870748299319728, 'number': 69}
33
+ - Sub Total.tax Price: {'precision': 1.0, 'recall': 0.9555555555555556, 'f1': 0.9772727272727273, 'number': 45}
34
  - Total.cashprice: {'precision': 0.9393939393939394, 'recall': 0.8732394366197183, 'f1': 0.9051094890510948, 'number': 71}
35
+ - Total.changeprice: {'precision': 0.9661016949152542, 'recall': 0.95, 'f1': 0.957983193277311, 'number': 60}
36
+ - Total.creditcardprice: {'precision': 0.8235294117647058, 'recall': 0.875, 'f1': 0.8484848484848485, 'number': 16}
37
+ - Total.emoneyprice: {'precision': 0.5, 'recall': 0.5, 'f1': 0.5, 'number': 2}
38
+ - Total.menuqty Cnt: {'precision': 0.71875, 'recall': 0.7666666666666667, 'f1': 0.7419354838709677, 'number': 30}
39
+ - Total.menutype Cnt: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8}
40
  - Total.total Etc: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4}
41
+ - Total.total Price: {'precision': 0.9019607843137255, 'recall': 0.9292929292929293, 'f1': 0.9154228855721392, 'number': 99}
42
+ - Overall Precision: 0.9125
43
+ - Overall Recall: 0.9201
44
+ - Overall F1: 0.9163
45
+ - Overall Accuracy: 0.9355
46
 
47
  ## Model description
48
 
 
67
  - seed: 42
68
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
69
  - lr_scheduler_type: linear
70
+ - training_steps: 300
71
  - mixed_precision_training: Native AMP
72
 
73
  ### Training results
74
 
75
+ | Training Loss | Epoch | Step | Validation Loss | Menu.cnt | Menu.discountprice | Menu.nm | Menu.num | Menu.price | Menu.sub Cnt | Menu.sub Nm | Menu.sub Price | Menu.unitprice | Sub Total.discount Price | Sub Total.etc | Sub Total.service Price | Sub Total.subtotal Price | Sub Total.tax Price | Total.cashprice | Total.changeprice | Total.creditcardprice | Total.emoneyprice | Total.menuqty Cnt | Total.menutype Cnt | Total.total Etc | Total.total Price | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
76
+ |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------:|:----------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------:|:---------------------------------------------------------:|:--------------------------------------------------------------------------------------------:|:---------------------------------------------------------:|:---------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
77
+ | 0.6711 | 2.0 | 200 | 0.2317 | {'precision': 0.9521739130434783, 'recall': 0.9733333333333334, 'f1': 0.9626373626373628, 'number': 225} | {'precision': 0.6, 'recall': 0.6, 'f1': 0.6, 'number': 10} | {'precision': 0.9011406844106464, 'recall': 0.9404761904761905, 'f1': 0.920388349514563, 'number': 252} | {'precision': 1.0, 'recall': 0.8181818181818182, 'f1': 0.9, 'number': 11} | {'precision': 0.9565217391304348, 'recall': 0.9758064516129032, 'f1': 0.9660678642714571, 'number': 248} | {'precision': 0.875, 'recall': 0.8235294117647058, 'f1': 0.8484848484848485, 'number': 17} | {'precision': 0.6666666666666666, 'recall': 0.8125, 'f1': 0.7323943661971831, 'number': 32} | {'precision': 1.0, 'recall': 0.7, 'f1': 0.8235294117647058, 'number': 20} | {'precision': 0.9253731343283582, 'recall': 0.9117647058823529, 'f1': 0.9185185185185185, 'number': 68} | {'precision': 0.8571428571428571, 'recall': 0.8571428571428571, 'f1': 0.8571428571428571, 'number': 7} | {'precision': 1.0, 'recall': 0.75, 'f1': 0.8571428571428571, 'number': 8} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 12} | {'precision': 0.8205128205128205, 'recall': 0.927536231884058, 'f1': 0.870748299319728, 'number': 69} | {'precision': 1.0, 'recall': 0.9555555555555556, 'f1': 0.9772727272727273, 'number': 45} | {'precision': 0.9393939393939394, 'recall': 0.8732394366197183, 'f1': 0.9051094890510948, 'number': 71} | {'precision': 0.9661016949152542, 'recall': 0.95, 'f1': 0.957983193277311, 'number': 60} | {'precision': 0.8235294117647058, 'recall': 0.875, 'f1': 0.8484848484848485, 'number': 16} | {'precision': 0.5, 'recall': 0.5, 'f1': 0.5, 'number': 2} | {'precision': 0.71875, 'recall': 0.7666666666666667, 'f1': 0.7419354838709677, 'number': 30} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.9019607843137255, 'recall': 0.9292929292929293, 'f1': 0.9154228855721392, 'number': 99} | 0.9125 | 0.9201 | 0.9163 | 0.9355 |
 
78
 
79
 
80
  ### Framework versions
logs/1695375883.4506092/events.out.tfevents.1695375883.pc.23343.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec5cc6453b06ff57683bbbc6cb35e84e0380a3bbe2b0b0984d35888ee9c980a7
3
+ size 5834
logs/1695375921.2977/events.out.tfevents.1695375921.pc.23454.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6beb01ef14add0c64d94b0855f7600f92fa2c83f8c36ba0d5f7b4c3614600c38
3
+ size 5834
logs/events.out.tfevents.1695374816.pc.22057.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fee8da4bd24b54a804f3229240f2897d529d1ac40d44aa50d9757f6a872d1919
3
- size 6086
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e77b68e874b615b572e7534127ebe6a43cab02fcf681645fb38e9736267b32da
3
+ size 6440
logs/events.out.tfevents.1695374955.pc.22057.2 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76b9337bcc97346e66e0ee68bbe13cda15fcc7b282b3ffe9bc28f11563070df1
3
+ size 544
logs/events.out.tfevents.1695375883.pc.23343.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a347c799bc7a334055e9e41074916961b2db57984be5a0251ad903b106b9e650
3
+ size 5427
logs/events.out.tfevents.1695375921.pc.23454.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c128ded543c6451adaf0dbd72110c882c5d792316cf4344671ca2574138c5560
3
+ size 6087
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
preprocessor_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "apply_ocr": true,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.5,
8
+ 0.5,
9
+ 0.5
10
+ ],
11
+ "image_processor_type": "LayoutLMv3ImageProcessor",
12
+ "image_std": [
13
+ 0.5,
14
+ 0.5,
15
+ 0.5
16
+ ],
17
+ "ocr_lang": null,
18
+ "processor_class": "LayoutLMv3Processor",
19
+ "resample": 2,
20
+ "rescale_factor": 0.00392156862745098,
21
+ "size": {
22
+ "height": 224,
23
+ "width": 224
24
+ },
25
+ "tesseract_config": ""
26
+ }
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a701fad438242248b2ca957b0e79511af6c56a8eb6156f767d6ae8eb9e6a4b9b
3
  size 520870417
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b274fdf3162258cf651f106a0b308cae6b4435bd8b7c0bb8389363254a148d4
3
  size 520870417
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": true,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": true,
3
+ "bos_token": {
4
+ "__type": "AddedToken",
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false
10
+ },
11
+ "clean_up_tokenization_spaces": true,
12
+ "cls_token": {
13
+ "__type": "AddedToken",
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": true,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ },
20
+ "cls_token_box": [
21
+ 0,
22
+ 0,
23
+ 0,
24
+ 0
25
+ ],
26
+ "eos_token": {
27
+ "__type": "AddedToken",
28
+ "content": "</s>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false
33
+ },
34
+ "errors": "replace",
35
+ "mask_token": {
36
+ "__type": "AddedToken",
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": true,
40
+ "rstrip": false,
41
+ "single_word": false
42
+ },
43
+ "model_max_length": 512,
44
+ "only_label_first_subword": true,
45
+ "pad_token": {
46
+ "__type": "AddedToken",
47
+ "content": "<pad>",
48
+ "lstrip": false,
49
+ "normalized": true,
50
+ "rstrip": false,
51
+ "single_word": false
52
+ },
53
+ "pad_token_box": [
54
+ 0,
55
+ 0,
56
+ 0,
57
+ 0
58
+ ],
59
+ "pad_token_label": -100,
60
+ "processor_class": "LayoutLMv3Processor",
61
+ "sep_token": {
62
+ "__type": "AddedToken",
63
+ "content": "</s>",
64
+ "lstrip": false,
65
+ "normalized": true,
66
+ "rstrip": false,
67
+ "single_word": false
68
+ },
69
+ "sep_token_box": [
70
+ 0,
71
+ 0,
72
+ 0,
73
+ 0
74
+ ],
75
+ "tokenizer_class": "LayoutLMv3Tokenizer",
76
+ "trim_offsets": true,
77
+ "unk_token": {
78
+ "__type": "AddedToken",
79
+ "content": "<unk>",
80
+ "lstrip": false,
81
+ "normalized": true,
82
+ "rstrip": false,
83
+ "single_word": false
84
+ }
85
+ }
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4477665b0433388e7a179549d458aa40b12abfd3292cc8658f264501c6f1d828
3
  size 3963
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:560ed256bc758b0c28c558cfb559cf00205f263f819b49491fff012711035d13
3
  size 3963
vocab.json ADDED
The diff for this file is too large to render. See raw diff