Edit model card

SentenceTransformer based on projecte-aina/roberta-base-ca-v2

This is a sentence-transformers model finetuned from projecte-aina/roberta-base-ca-v2 on the projecte-aina/sts-ca dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("pauhidalgoo/finetuned-sts-roberta-base-ca-v2")
# Run inference
sentences = [
    'Però que hi ha de cert en tot això?',
    'Però, què hi ha de veritat en tot això?',
    'Els camioners dissolen la marxa lenta a les rondes de Barcelona',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.935
spearman_cosine 0.9899
pearson_manhattan 0.9363
spearman_manhattan 0.9687
pearson_euclidean 0.9377
spearman_euclidean 0.9702
pearson_dot 0.9163
spearman_dot 0.9364
pearson_max 0.9377
spearman_max 0.9899

Semantic Similarity

Metric Value
pearson_cosine 0.7185
spearman_cosine 0.7312
pearson_manhattan 0.6843
spearman_manhattan 0.6722
pearson_euclidean 0.6853
spearman_euclidean 0.6732
pearson_dot 0.5914
spearman_dot 0.6075
pearson_max 0.7185
spearman_max 0.7312

Semantic Similarity

Metric Value
pearson_cosine 0.7429
spearman_cosine 0.7714
pearson_manhattan 0.7146
spearman_manhattan 0.7267
pearson_euclidean 0.7136
spearman_euclidean 0.7269
pearson_dot 0.6409
spearman_dot 0.6428
pearson_max 0.7429
spearman_max 0.7714

Training Details

Training Dataset

projecte-aina/sts-ca

  • Dataset: projecte-aina/sts-ca
  • Size: 2,073 training samples
  • Columns: sentence1, sentence2, and label
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 label
    type string string float
    details
    • min: 7 tokens
    • mean: 22.3 tokens
    • max: 63 tokens
    • min: 7 tokens
    • mean: 21.07 tokens
    • max: 51 tokens
    • min: 0.0
    • mean: 2.56
    • max: 5.0
  • Samples:
    sentence1 sentence2 label
    Atorga per primer cop les mencions Encarna Sanahuja a la inclusió de la perspectiva de gènere en docència Universitària Creen la menció M. Encarna Sanahuja a la inclusió de la perspectiva de gènere en docència universitària 3.5
    Finalment, afegiu-hi els bolets que haureu saltat en una paella amb oli i deixeu-ho coure tot junt durant 5 minuts. Finalment, poseu-hi les minipastanagues tallades a dauets, els pèsols, rectifiqueu-ho de sal i deixeu-ho coure tot junt durant un parell de minuts més. 1.25
    El TC suspèn el pla d'acció exterior i de relacions amb la UE de la Generalitat El Constitucional manté la suspensió del pla estratègic d'acció exterior i relacions amb la UE 3.6700000762939453
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

Evaluation Dataset

projecte-aina/sts-ca

  • Dataset: projecte-aina/sts-ca
  • Size: 500 evaluation samples
  • Columns: sentence1, sentence2, and label
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 label
    type string string float
    details
    • min: 8 tokens
    • mean: 22.81 tokens
    • max: 60 tokens
    • min: 9 tokens
    • mean: 21.94 tokens
    • max: 65 tokens
    • min: 0.0
    • mean: 2.58
    • max: 5.0
  • Samples:
    sentence1 sentence2 label
    L'euríbor puja una centèsima fins el -0,189% al gener després de setze mesos de caigudes La morositat de bancs i caixes repunta moderadament fins el 9,44%, després d'onze mesos de caigudes 1.6699999570846558
    Demanen 3 anys de presó a l'ex treballador d'una farmàcia de Lleida per robar més de 550 unitats de Viagra i Cialis L'extreballador d'una farmàcia de Lleida accepta sis mesos de presó per robar més de 500 unitats de Viagra i Cialis 2.0
    Es tracta d'un jove de 20 anys que ha estat denunciat als Mossos d'Esquadra Es tracta d'un jove de 21 anys que ha estat denunciat penalment pels Mossos 3.0
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • learning_rate: 2e-05
  • weight_decay: 0.01
  • num_train_epochs: 25
  • warmup_ratio: 0.1
  • fp16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: no
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.01
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 25
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss spearman_cosine
3.8462 500 4.3798 -
7.6923 1000 3.6486 -
11.5385 1500 3.2479 -
15.3846 2000 2.9539 -
19.2308 2500 2.6753 -
23.0769 3000 2.4955 -
25.0 3250 - 0.7714

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.0
  • Transformers: 4.41.1
  • PyTorch: 2.3.0+cu121
  • Accelerate: 0.30.1
  • Datasets: 2.19.2
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CoSENTLoss

@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}
Downloads last month
6
Safetensors
Model size
125M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for pauhidalgoo/finetuned-sts-roberta-base-ca-v2

Finetuned
(10)
this model

Evaluation results