Pre-training Small Base LMs with Fewer Tokens

Published on Apr 12
ยท Submitted by akhaliq on Apr 15
#1 Paper of the day


We study the effectiveness of a simple approach to develop a small base language model (LM) starting from an existing large base LM: first inherit a few transformer blocks from the larger LM, and then train this smaller model on a very small subset (0.1\%) of the raw pretraining data of the larger model. We call our simple recipe Inheritune and first demonstrate it for building a small base LM with 1.5B parameters using 1B tokens (and a starting few layers of larger LM of 3B parameters); we do this using a single A6000 GPU for less than half a day. Across 9 diverse evaluation datasets as well as the MMLU benchmark, the resulting model compares favorably to publicly available base models of 1B-2B size, some of which have been trained using 50-1000 times more tokens. We investigate Inheritune in a slightly different setting where we train small LMs utilizing larger LMs and their full pre-training dataset. Here we show that smaller LMs trained utilizing some of the layers of GPT2-medium (355M) and GPT-2-large (770M) can effectively match the val loss of their bigger counterparts when trained from scratch for the same number of training steps on OpenWebText dataset with 9B tokens. We analyze our recipe with extensive experiments and demonstrate it efficacy on diverse settings. Our code is available at


Paper author

Anybody interested in HF integration?


Inheritune: Training Small Language Models with Minimal Data and Compute

๐Ÿ‘‰ Subscribe:
๐Ÿ‘‰ Twitter:
๐Ÿ‘‰ LMNT (Partner):

By Arxflix

Sign up or log in to comment

Models citing this paper 13

Browse 13 models citing this paper

Datasets citing this paper 0

No dataset linking this paper

Cite in a dataset to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite in a Space to link it from this page.

Collections including this paper 16