Improving Small Language Models' Mathematical Reasoning via Mix Thoughts Distillation

Published on Jan 22


This work addresses the challenge of democratizing advanced Large Language Models (LLMs) by compressing their mathematical reasoning capabilities into sub-billion parameter Small Language Models (SLMs) without compromising performance. We introduce Equation-of-Thought Distillation (EoTD), a novel technique that encapsulates the reasoning process into equation-based representations to construct an EoTD dataset for fine-tuning SLMs. Additionally, we propose the Mix Thoughts Distillation (MTD) framework to enhance the reasoning performance of SLMs. This involves creating a reasoning dataset with multiple thought processes and using it for fine-tuning. Our experimental findings demonstrate that EoTD significantly boosts the reasoning abilities of SLMs, while MTD enables these models to achieve state-of-the-art reasoning performance.


Sign up or log in to comment

Models citing this paper 1

Datasets citing this paper 0

No dataset linking this paper

Cite in a dataset to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite in a Space to link it from this page.

Collections including this paper 2