Inflation with Diffusion: Efficient Temporal Adaptation for Text-to-Video Super-Resolution

Published on Jan 18
· Submitted by akhaliq on Jan 22


We propose an efficient diffusion-based text-to-video super-resolution (SR) tuning approach that leverages the readily learned capacity of pixel level image diffusion model to capture spatial information for video generation. To accomplish this goal, we design an efficient architecture by inflating the weightings of the text-to-image SR model into our video generation framework. Additionally, we incorporate a temporal adapter to ensure temporal coherence across video frames. We investigate different tuning approaches based on our inflated architecture and report trade-offs between computational costs and super-resolution quality. Empirical evaluation, both quantitative and qualitative, on the Shutterstock video dataset, demonstrates that our approach is able to perform text-to-video SR generation with good visual quality and temporal consistency. To evaluate temporal coherence, we also present visualizations in video format in .


This is an automated message from the Librarian Bot. I found the following papers similar to this paper.

The following papers were recommended by the Semantic Scholar API

Please give a thumbs up to this comment if you found it helpful!

If you want recommendations for any Paper on Hugging Face checkout this Space

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite in a model to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite in a dataset to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite in a Space to link it from this page.

Collections including this paper 4