Papers
arxiv:2312.13558

The Truth is in There: Improving Reasoning in Language Models with Layer-Selective Rank Reduction

Published on Dec 21, 2023
Authors:
,

Abstract

Transformer-based Large Language Models (LLMs) have become a fixture in modern machine learning. Correspondingly, significant resources are allocated towards research that aims to further advance this technology, typically resulting in models of increasing size that are trained on increasing amounts of data. This work, however, demonstrates the surprising result that it is often possible to significantly improve the performance of LLMs by selectively removing higher-order components of their weight matrices. This simple intervention, which we call LAyer-SElective Rank reduction (LASER), can be done on a model after training has completed, and requires no additional parameters or data. We show extensive experiments demonstrating the generality of this finding across language models and datasets, and provide in-depth analyses offering insights into both when LASER is effective and the mechanism by which it operates.

Community

Sign up or log in to comment

Models citing this paper 30

Browse 30 models citing this paper

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2312.13558 in a dataset README.md to link it from this page.

Spaces citing this paper 16

Collections including this paper 5