Papers
arxiv:2310.12798

MolCA: Molecular Graph-Language Modeling with Cross-Modal Projector and Uni-Modal Adapter

Published on Oct 19, 2023
Authors:
,
,
,
,
,

Abstract

Language Models (LMs) have demonstrated impressive molecule understanding ability on various 1D text-related tasks. However, they inherently lack 2D graph perception - a critical ability of human professionals in comprehending molecules' topological structures. To bridge this gap, we propose MolCA: Molecular Graph-Language Modeling with Cross-Modal Projector and Uni-Modal Adapter. MolCA enables an LM (e.g., Galactica) to understand both text- and graph-based molecular contents via the cross-modal projector. Specifically, the cross-modal projector is implemented as a Q-Former to connect a graph encoder's representation space and an LM's text space. Further, MolCA employs a uni-modal adapter (i.e., LoRA) for the LM's efficient adaptation to downstream tasks. Unlike previous studies that couple an LM with a graph encoder via cross-modal contrastive learning, MolCA retains the LM's ability of open-ended text generation and augments it with 2D graph information. To showcase its effectiveness, we extensively benchmark MolCA on tasks of molecule captioning, IUPAC name prediction, and molecule-text retrieval, on which MolCA significantly outperforms the baselines. Our codes and checkpoints can be found at https://github.com/acharkq/MolCA.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2310.12798 in a model README.md to link it from this page.

Datasets citing this paper 1

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2310.12798 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.