Papers
arxiv:2304.11277

PyTorch FSDP: Experiences on Scaling Fully Sharded Data Parallel

Published on Apr 21, 2023
Authors:
,
,
,
,
,
,
,
,
,
,
,
,

Abstract

It is widely acknowledged that large models have the potential to deliver superior performance across a broad range of domains. Despite the remarkable progress made in the field of machine learning systems research, which has enabled the development and exploration of large models, such abilities remain confined to a small group of advanced users and industry leaders, resulting in an implicit technical barrier for the wider community to access and leverage these technologies. In this paper, we introduce PyTorch Fully Sharded Data Parallel (FSDP) as an industry-grade solution for large model training. FSDP has been closely co-designed with several key PyTorch core components including Tensor implementation, dispatcher system, and CUDA memory caching allocator, to provide non-intrusive user experiences and high training efficiency. Additionally, FSDP natively incorporates a range of techniques and settings to optimize resource utilization across a variety of hardware configurations. The experimental results demonstrate that FSDP is capable of achieving comparable performance to Distributed Data Parallel while providing support for significantly larger models with near-linear scalability in terms of TFLOPS.

Community

Sign up or log in to comment

Models citing this paper 16

Browse 16 models citing this paper

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2304.11277 in a dataset README.md to link it from this page.

Spaces citing this paper 33

Collections including this paper 2