Edit model card

recipe-distilroberta-Is

This model is a fine-tuned version of distilroberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 4.7427

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
19.6191 1.0 2135 10.5217
8.6838 2.0 4270 7.3017
6.884 3.0 6405 6.4445
6.2953 4.0 8540 6.0610
6.0205 5.0 10675 5.9047
5.851 6.0 12810 5.7790
5.7464 7.0 14945 5.7164
5.6684 8.0 17080 5.6415
5.6138 9.0 19215 5.5671
5.5638 10.0 21350 5.5360
5.5288 11.0 23485 5.5069
5.4968 12.0 25620 5.4968
5.4696 13.0 27755 5.4539
5.4468 14.0 29890 5.4416
5.4177 15.0 32025 5.3722
5.3717 16.0 34160 5.3226
5.317 17.0 36295 5.2197
5.2367 18.0 38430 5.0888
5.1543 19.0 40565 4.9954
5.0919 20.0 42700 4.9306
5.038 21.0 44835 4.8657
4.9983 22.0 46970 4.8137
4.9639 23.0 49105 4.7704
4.9426 24.0 51240 4.7486
4.9312 25.0 53375 4.7427

Framework versions

  • Transformers 4.19.0.dev0
  • Pytorch 1.9.0+cu111
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
0
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.