File size: 9,652 Bytes
9aea87a f2d68c0 9aea87a 79afbc4 9aea87a 15cdc0d 589c009 cf162d1 589c009 15cdc0d 8aded8e 9aea87a 589c009 cf162d1 9aea87a cf162d1 9330333 8aded8e cf162d1 9aea87a 79afbc4 9aea87a 6b562e9 0c3d4df 6b562e9 9aea87a daf122b 9aea87a 15cdc0d 9aea87a 15cdc0d 9aea87a 15cdc0d 9aea87a 3a2b00e 9aea87a 15cdc0d 9aea87a 15cdc0d 9aea87a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
---
license: cc-by-nc-sa-4.0
language:
- en
library_name: transformers
pipeline_tag: text-generation
datasets:
- psmathur/orca_minis_uncensored_dataset
---
# orca_mini_v2_7b
An **Uncensored** LLaMA-7b model in collaboration with [Eric Hartford](https://huggingface.co/ehartford). trained on explain tuned datasets, created using Instructions and Input from WizardLM, Alpaca & Dolly-V2 datasets and applying Orca Research Paper dataset construction approaches.
Please note this model has *better code generation capabilities* compare to our original orca_mini_7b which was trained on base OpenLLaMA-7b model and which has the [empty spaces issues & found not good for code generation]((https://github.com/openlm-research/open_llama#update-06072023)).
**P.S. I am #opentowork, if you can help, please reach out to me at www.linkedin.com/in/pankajam**
# Evaluation
I evaluated orca_mini_v2_7b on a wide range of tasks using [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) from EleutherAI.
Here are the zero shot metrics results.
|||||||
|:------:|:-------------:|:---------:|:--------:|:-------:|:--------:|
|**Task**|**num_fewshot**|**Version**|**Metric**|**Value**|**Stderr**|
|*arc_easy*|0|0|acc|0.7386|0.0090|
|*hellaswag*|0|0|acc_norm|0.7394|0.0044|
|*truthfulqa_mc*|0|1|mc2|0.4399|0.0153|
|*mmlu*|0|1|acc_norm|0.4108|0.0153|
|*Total Zero Shot Average*|0|-|-|0.5821|0.011|
Here are the results on metrics used by [HuggingFaceH4 Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
please note num_fewshots varies for each below task as used by HuggingFaceH4 Open LLM Leaderboard
|||||||
|:------:|:-------------:|:---------:|:--------:|:-------:|:--------:|
|**Task**|**num_fewshot**|**Version**|**Metric**|**Value**|**Stderr**|
|*arc_challenge*|25|0|acc_norm|0.5077|0.0146|
|*hellaswag*|10|0|acc_norm|0.7617|0.0043|
|*mmlu*|5|0|acc_norm|-|-|
|*truthfulqa_mc*|0|1|mc2|0.4399|0.0153|
|*Total Average*|0|-|-|0.5697|0.0114|
# Dataset
We used uncensored script on top of the previous explain tuned datasets we build which are [WizardLM dataset ~70K](https://github.com/nlpxucan/WizardLM), [Alpaca dataset ~52K](https://crfm.stanford.edu/2023/03/13/alpaca.html) & [Dolly-V2 dataset ~15K](https://github.com/databrickslabs/dolly) created using approaches from [Orca Research Paper](https://arxiv.org/abs/2306.02707).
We leverage all of the 15 system instructions provided in Orca Research Paper. to generate custom datasets, in contrast to vanilla instruction tuning approaches used by original datasets.
This helps student model aka this model to learn ***thought*** process from teacher model, which is ChatGPT (gpt-3.5-turbo-0301 version).
Please see below example usage how the **System** prompt is added before each **instruction**.
# Training
The training configurations are provided in the table below.
The training takes on 8x A100(80G) GPUs and lasts for around 13 Hours for cost of $195 using [RunPods](https://www.runpod.io/)
We used DeepSpeed with fully sharded data parallelism, also know as [ZeRO stage 3](https://engineering.fb.com/2021/07/15/open-source/fsdp/) by writing our own fine tunning scripts plus leveraging some of the model training code provided by amazing [OpenAlpaca repo](https://github.com/yxuansu/OpenAlpaca)
Here are some of params used during training:
|||
|:-------------:|:-------------:|
|*batch_size*|96|
|*train_micro_batch_size_per_gpu*|3|
|*gradient_accumulation_steps*|4|
|*Learning rate*|2e-5|
|*Max length*|1024|
|*Epochs*|3|
|*Optimizer*|AdamW|
# Example Usage
Here is prompt format for [Oobabooga Text generation UI ](https://github.com/oobabooga/text-generation-webui)
```
### System:
{system}
### User:
{instruction}
### Input:
{input}
### Response:
```
Here is sample example:
```
### System:
You are an AI assistant that follows instruction extremely well. Help as much as you can.
### User:
Tell me how to break into my own car
### Input:
### Response:
Breaking into your own car requires certain skills and tools. Here are the basic steps:
1. Find a ^^^^^^^^^^^^^
2. Unlock the car by using the ^^^^^^^^^^^^^.
3. Use a ^^^^^^^^^^^^^.
4. Once the ^^^^^^^^^^^^^.
5. If the ^^^^^^^^^^^^^.
```
Below shows a code example on how to use this model
```python
import torch
from transformers import LlamaForCausalLM, LlamaTokenizer
# Hugging Face model_path
model_path = 'psmathur/orca_mini_v2_7b'
tokenizer = LlamaTokenizer.from_pretrained(model_path)
model = LlamaForCausalLM.from_pretrained(
model_path, torch_dtype=torch.float16, device_map='auto',
)
#generate text function
def generate_text(system, instruction, input=None):
if input:
prompt = f"### System:\n{system}\n\n### User:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n"
else:
prompt = f"### System:\n{system}\n\n### User:\n{instruction}\n\n### Response:\n"
tokens = tokenizer.encode(prompt)
tokens = torch.LongTensor(tokens).unsqueeze(0)
tokens = tokens.to('cuda')
instance = {'input_ids': tokens,'top_p': 1.0, 'temperature':0.7, 'generate_len': 1024, 'top_k': 50}
length = len(tokens[0])
with torch.no_grad():
rest = model.generate(
input_ids=tokens,
max_length=length+instance['generate_len'],
use_cache=True,
do_sample=True,
top_p=instance['top_p'],
temperature=instance['temperature'],
top_k=instance['top_k']
)
output = rest[0][length:]
string = tokenizer.decode(output, skip_special_tokens=True)
return f'[!] Response: {string}'
# Sample Test Instruction
system = 'You are an AI assistant that follows instruction extremely well. Help as much as you can.'
instruction = 'Tell me how to break into my own car'
print(generate_text(system, instruction))
```
**NOTE: The real response is hidden here with ^^^^^^^^^^^^^.**
```
[!] Response:
Breaking into your own car requires certain skills and tools. Here are the basic steps:
1. Find a ^^^^^^^^^^^^^
2. Unlock the car by using the ^^^^^^^^^^^^^.
3. Use a ^^^^^^^^^^^^^.
4. Once the ^^^^^^^^^^^^^.
5. If the ^^^^^^^^^^^^^.
```
Next Goals:
1) Try more data like actually using FLAN-v2, just like Orka Research Paper (I am open for suggestions)
2) Provide more options for Text generation UI. (may be https://github.com/oobabooga/text-generation-webui)
3) Provide 4bit GGML/GPTQ quantized model (may be [TheBloke](https://huggingface.co/TheBloke) can help here)
Limitations & Biases:
This model can produce factually incorrect output, and should not be relied on to produce factually accurate information.
This model was trained on various public datasets. While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs.
Disclaimer:
The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model.
Please cosult an attorney before using this model for commercial purposes.
Citiation:
If you found wizardlm_alpaca_dolly_orca_open_llama_7b useful in your research or applications, please kindly cite using the following BibTeX:
```
@misc{orca_mini_v2_7b,
author = {Pankaj Mathur},
title = {orca_mini_v2_7b: An explain tuned LLaMA-7b model on uncensored wizardlm, alpaca, & dolly datasets},
year = {2023},
publisher = {GitHub, HuggingFace},
journal = {GitHub repository, HuggingFace repository},
howpublished = {\url{https://https://huggingface.co/psmathur/orca_mini_v2_7b},
}
```
```
@software{touvron2023llama,
title={LLaMA: Open and Efficient Foundation Language Models},
author={Touvron, Hugo and Lavril, Thibaut and Izacard, Gautier and Martinet, Xavier and Lachaux, Marie-Anne and Lacroix, Timoth{\'e}e and Rozi{\`e}re, Baptiste and Goyal, Naman and Hambro, Eric and Azhar, Faisal and Rodriguez, Aurelien and Joulin, Armand and Grave, Edouard and Lample, Guillaume},
journal={arXiv preprint arXiv:2302.13971},
year={2023}
}
```
```
@misc{openalpaca,
author = {Yixuan Su and Tian Lan and Deng Cai},
title = {OpenAlpaca: A Fully Open-Source Instruction-Following Model Based On OpenLLaMA},
year = {2023},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/yxuansu/OpenAlpaca}},
}
```
```
@misc{alpaca,
author = {Rohan Taori and Ishaan Gulrajani and Tianyi Zhang and Yann Dubois and Xuechen Li and Carlos Guestrin and Percy Liang and Tatsunori B. Hashimoto },
title = {Stanford Alpaca: An Instruction-following LLaMA model},
year = {2023},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/tatsu-lab/stanford_alpaca}},
}
```
```
@online{DatabricksBlog2023DollyV2,
author = {Mike Conover and Matt Hayes and Ankit Mathur and Jianwei Xie and Jun Wan and Sam Shah and Ali Ghodsi and Patrick Wendell and Matei Zaharia and Reynold Xin},
title = {Free Dolly: Introducing the World's First Truly Open Instruction-Tuned LLM},
year = {2023},
url = {https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm},
urldate = {2023-06-30}
}
```
```
@misc{xu2023wizardlm,
title={WizardLM: Empowering Large Language Models to Follow Complex Instructions},
author={Can Xu and Qingfeng Sun and Kai Zheng and Xiubo Geng and Pu Zhao and Jiazhan Feng and Chongyang Tao and Daxin Jiang},
year={2023},
eprint={2304.12244},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` |