Text Generation
Transformers
PyTorch
English
llama
Eval Results
text-generation-inference
Inference Endpoints
File size: 12,788 Bytes
e918056
 
 
60d75cc
e918056
 
 
60d75cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e918056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1332e7f
dacfc88
 
 
 
 
 
 
 
e918056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1058709
 
 
 
 
 
 
 
 
 
e918056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60d75cc
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
---
language:
- en
license: cc-by-nc-sa-4.0
library_name: transformers
datasets:
- psmathur/orca_minis_uncensored_dataset
pipeline_tag: text-generation
model-index:
- name: orca_mini_v2_13b
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 55.12
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=psmathur/orca_mini_v2_13b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 79.69
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=psmathur/orca_mini_v2_13b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 50.07
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=psmathur/orca_mini_v2_13b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 52.56
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=psmathur/orca_mini_v2_13b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 72.69
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=psmathur/orca_mini_v2_13b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 6.37
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=psmathur/orca_mini_v2_13b
      name: Open LLM Leaderboard
---
# orca_mini_v2_13b

An **Uncensored** LLaMA-13b model in collaboration with [Eric Hartford](https://huggingface.co/ehartford). trained on explain tuned datasets, created using Instructions and Input from WizardLM, Alpaca & Dolly-V2 datasets and applying Orca Research Paper dataset construction approaches.

Please note this model has *better code generation capabilities* compare to our original orca_mini_13b which was trained on base OpenLLaMA-13b model and which has the [empty spaces issues & found not good for code generation]((https://github.com/openlm-research/open_llama#update-06072023)).


**P.S. I am #opentowork, if you can help, please reach out to me at www.linkedin.com/in/pankajam**

# Evaluation

I evaluated orca_mini_v2_13b on a wide range of tasks using [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) from EleutherAI. 

Here are the results on metrics used by [HuggingFaceH4 Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)


||||
|:------:|:-------------:|:---------:|
|**Task**|**Value**|**Stderr**|
|*arc_challenge*|0.5478|0.0145|
|*hellaswag*|0.7023|0.0040|
|*mmlu*|0.4969|0.035|
|*truthfulqa_mc*|0.44|0.0158|
|*Total Average*|0.54675|0.0114|




# Dataset

We used uncensored script on top of the previous explain tuned datasets we build which are [WizardLM dataset ~70K](https://github.com/nlpxucan/WizardLM), [Alpaca dataset ~52K](https://crfm.stanford.edu/2023/03/13/alpaca.html)  & [Dolly-V2 dataset ~15K](https://github.com/databrickslabs/dolly) created using approaches from [Orca Research Paper](https://arxiv.org/abs/2306.02707).

We leverage all of the 15 system instructions provided in Orca Research Paper. to generate custom datasets, in contrast to vanilla instruction tuning approaches used by original datasets.

This helps student model aka this model to learn ***thought*** process from teacher model, which is ChatGPT (gpt-3.5-turbo-0301 version).

Please see below example usage how the **System** prompt is added before each **instruction**.

# Training

The training configurations are provided in the table below.

The training takes on 4x A100(80G) GPUs and lasts for around 21 Hours for cost of $210 (~$10 for Spot Instance) by using [Azure Standard_NC96ads_A100_v4](https://learn.microsoft.com/en-us/azure/virtual-machines/nc-a100-v4-series#supported-features).

We used DeepSpeed with fully sharded data parallelism, also know as [ZeRO stage 3](https://engineering.fb.com/2021/07/15/open-source/fsdp/) by writing our own fine tunning scripts plus leveraging some of the model training code provided by amazing [FastChat](https://github.com/lm-sys/FastChat)

Here are some of params used during training:

|||
|:-------------:|:-------------:|
|*batch_size*|48|
|*train_micro_batch_size_per_gpu*|3|
|*gradient_accumulation_steps*|4|
|*Learning rate*|2e-5|
|*Max length*|2048|
|*Epochs*|3|
|*Optimizer*|AdamW|



# Example Usage

Here is prompt format for [Oobabooga Text generation UI ](https://github.com/oobabooga/text-generation-webui)

```
### System:
{system}

### User:
{instruction}

### Input:
{input}

### Response:

```

Here is sample example:

```
### System:
You are an AI assistant that follows instruction extremely well. Help as much as you can.

### User:
Tell me how to break into my own car

### Input:

### Response:
Breaking into your own car requires certain skills and tools. Here are the basic steps:

1. Find a ^^^^^^^^^^^^^
2. Unlock the car by using the ^^^^^^^^^^^^^.
3. Use a ^^^^^^^^^^^^^.
4. Once the ^^^^^^^^^^^^^.
5. If the ^^^^^^^^^^^^^.

```

Below shows a code example on how to use this model

```python
import torch
from transformers import LlamaForCausalLM, LlamaTokenizer

# Hugging Face model_path
model_path = 'psmathur/orca_mini_v2_13b'
tokenizer = LlamaTokenizer.from_pretrained(model_path)
model = LlamaForCausalLM.from_pretrained(
    model_path, torch_dtype=torch.float16, device_map='auto',
)


#generate text function
def generate_text(system, instruction, input=None):
    
    if input:
        prompt = f"### System:\n{system}\n\n### User:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n"
    else:
        prompt = f"### System:\n{system}\n\n### User:\n{instruction}\n\n### Response:\n"
    
    tokens = tokenizer.encode(prompt)
    tokens = torch.LongTensor(tokens).unsqueeze(0)
    tokens = tokens.to('cuda')

    instance = {'input_ids': tokens,'top_p': 1.0, 'temperature':0.7, 'generate_len': 1024, 'top_k': 50}

    length = len(tokens[0])
    with torch.no_grad():
        rest = model.generate(
            input_ids=tokens, 
            max_length=length+instance['generate_len'], 
            use_cache=True, 
            do_sample=True, 
            top_p=instance['top_p'],
            temperature=instance['temperature'],
            top_k=instance['top_k']
        )    
    output = rest[0][length:]
    string = tokenizer.decode(output, skip_special_tokens=True)
    return f'[!] Response: {string}'

# Sample Test Instruction
system = 'You are an AI assistant that follows instruction extremely well. Help as much as you can.'
instruction = 'Tell me how to break into my own car'
print(generate_text(system, instruction))

```

**NOTE: The real response is hidden here with ^^^^^^^^^^^^^.**

```
[!] Response:
Breaking into your own car requires certain skills and tools. Here are the basic steps:

1. Find a ^^^^^^^^^^^^^
2. Unlock the car by using the ^^^^^^^^^^^^^.
3. Use a ^^^^^^^^^^^^^.
4. Once the ^^^^^^^^^^^^^.
5. If the ^^^^^^^^^^^^^.

```

Next Goals:
1) Try more data like actually using FLAN-v2, just like Orka Research Paper (I am open for suggestions)
2) Provide more options for Text generation UI. (may be https://github.com/oobabooga/text-generation-webui)
3) Provide 4bit GGML/GPTQ quantized model (may be [TheBloke](https://huggingface.co/TheBloke) can help here)


Limitations & Biases:

This model can produce factually incorrect output, and should not be relied on to produce factually accurate information.
This model was trained on various public datasets. While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs.

Disclaimer:

The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model.
Please cosult an attorney before using this model for commercial purposes.


Citiation:

If you found wizardlm_alpaca_dolly_orca_open_llama_7b useful in your research or applications, please kindly cite using the following BibTeX:

```
@misc{orca_mini_v2_13b,
  author = {Pankaj Mathur},
  title = {orca_mini_v2_13b: An explain tuned LLaMA-13b model on uncensored wizardlm, alpaca, & dolly datasets},
  year = {2023},
  publisher = {GitHub, HuggingFace},
  journal = {GitHub repository, HuggingFace repository},
  howpublished = {\url{https://https://huggingface.co/psmathur/orca_mini_v2_13b},
}
```
```
@misc{mukherjee2023orca,
      title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4}, 
      author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah},
      year={2023},
      eprint={2306.02707},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```
```
@software{touvron2023llama,
  title={LLaMA: Open and Efficient Foundation Language Models},
  author={Touvron, Hugo and Lavril, Thibaut and Izacard, Gautier and Martinet, Xavier and Lachaux, Marie-Anne and Lacroix, Timoth{\'e}e and Rozi{\`e}re, Baptiste and Goyal, Naman and Hambro, Eric and Azhar, Faisal and Rodriguez, Aurelien and Joulin, Armand and Grave, Edouard and Lample, Guillaume},
  journal={arXiv preprint arXiv:2302.13971},
  year={2023}
}
```
```
@misc{openalpaca,
  author = {Yixuan Su and Tian Lan and Deng Cai},
  title = {OpenAlpaca: A Fully Open-Source Instruction-Following Model Based On OpenLLaMA},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/yxuansu/OpenAlpaca}},
}
```
```
@misc{alpaca,
  author = {Rohan Taori and Ishaan Gulrajani and Tianyi Zhang and Yann Dubois and Xuechen Li and Carlos Guestrin and Percy Liang and Tatsunori B. Hashimoto },
  title = {Stanford Alpaca: An Instruction-following LLaMA model},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/tatsu-lab/stanford_alpaca}},
}
```
```
@online{DatabricksBlog2023DollyV2,
    author    = {Mike Conover and Matt Hayes and Ankit Mathur and Jianwei Xie and Jun Wan and Sam Shah and Ali Ghodsi and Patrick Wendell and Matei Zaharia and Reynold Xin},
    title     = {Free Dolly: Introducing the World's First Truly Open Instruction-Tuned LLM},
    year      = {2023},
    url       = {https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm},
    urldate   = {2023-06-30}
}
```
```
@misc{xu2023wizardlm,
      title={WizardLM: Empowering Large Language Models to Follow Complex Instructions}, 
      author={Can Xu and Qingfeng Sun and Kai Zheng and Xiubo Geng and Pu Zhao and Jiazhan Feng and Chongyang Tao and Daxin Jiang},
      year={2023},
      eprint={2304.12244},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_psmathur__orca_mini_v2_13b)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |52.75|
|AI2 Reasoning Challenge (25-Shot)|55.12|
|HellaSwag (10-Shot)              |79.69|
|MMLU (5-Shot)                    |50.07|
|TruthfulQA (0-shot)              |52.56|
|Winogrande (5-shot)              |72.69|
|GSM8k (5-shot)                   | 6.37|