File size: 3,415 Bytes
c956231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c9d120
 
8b39392
 
 
 
0c9d120
 
c956231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
392c616
16892ce
767f863
3bb0b3a
3c1163f
e2b82db
dfb978e
8c4e156
ff30839
80b7319
4e5b763
8b39392
5bae1fe
0c9d120
c956231
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
license: apache-2.0
base_model: google/mt5-small
tags:
- generated_from_keras_callback
model-index:
- name: pakawadeep/mt5-small-finetuned-ctfl-augmented_2
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# pakawadeep/mt5-small-finetuned-ctfl-augmented_2

This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.9140
- Validation Loss: 1.0483
- Train Rouge1: 8.4512
- Train Rouge2: 1.3861
- Train Rougel: 8.4158
- Train Rougelsum: 8.4866
- Train Gen Len: 11.9505
- Epoch: 14

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32

### Training results

| Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch |
|:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:|
| 8.2342     | 2.0102          | 1.5963       | 0.0          | 1.6101       | 1.6005          | 16.5050       | 0     |
| 3.7896     | 1.7810          | 4.8515       | 0.7426       | 4.8845       | 4.8680          | 11.8614       | 1     |
| 2.7018     | 1.7212          | 6.8812       | 1.4851       | 6.8812       | 6.8812          | 11.9554       | 2     |
| 2.1382     | 1.5885          | 7.8996       | 2.0792       | 7.9066       | 7.9066          | 11.9010       | 3     |
| 1.7718     | 1.4799          | 7.7086       | 2.0792       | 7.7086       | 7.7086          | 11.8911       | 4     |
| 1.5137     | 1.3902          | 7.7086       | 2.0792       | 7.7086       | 7.7086          | 11.9653       | 5     |
| 1.3341     | 1.3439          | 8.6987       | 2.0792       | 8.6987       | 8.6987          | 11.9307       | 6     |
| 1.2253     | 1.2605          | 8.6987       | 2.0792       | 8.6987       | 8.6987          | 11.9356       | 7     |
| 1.1425     | 1.2215          | 8.9816       | 2.3762       | 8.9816       | 8.9816          | 11.9356       | 8     |
| 1.0872     | 1.1772          | 8.9816       | 2.3762       | 8.9816       | 8.9816          | 11.9554       | 9     |
| 1.0400     | 1.1338          | 8.6987       | 1.8812       | 8.6987       | 8.7341          | 11.9604       | 10    |
| 0.9997     | 1.0986          | 8.6987       | 1.8812       | 8.6987       | 8.7341          | 11.9554       | 11    |
| 0.9732     | 1.0846          | 8.4512       | 1.3861       | 8.4158       | 8.4866          | 11.9653       | 12    |
| 0.9388     | 1.0718          | 8.4512       | 1.3861       | 8.4158       | 8.4866          | 11.9752       | 13    |
| 0.9140     | 1.0483          | 8.4512       | 1.3861       | 8.4158       | 8.4866          | 11.9505       | 14    |


### Framework versions

- Transformers 4.41.2
- TensorFlow 2.15.0
- Datasets 2.20.0
- Tokenizers 0.19.1