File size: 4,375 Bytes
0398d6b 4c51173 de3b5c8 4c51173 0398d6b 697d0d2 0d201d7 0367325 564e823 735db61 3d167c1 43a45e1 2956c6e c280182 0d78167 9dd3579 b095e2d 102d151 188a632 9bd7a68 faaabec d2a094d 639eca5 e40a0bc bf27762 de3b5c8 4c51173 0398d6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
license: apache-2.0
base_model: google/mt5-large
tags:
- generated_from_keras_callback
model-index:
- name: pakawadeep/mt5-large-finetuned-ctfl-augmented_2
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# pakawadeep/mt5-large-finetuned-ctfl-augmented_2
This model is a fine-tuned version of [google/mt5-large](https://huggingface.co/google/mt5-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1781
- Validation Loss: 0.7498
- Train Rouge1: 8.8402
- Train Rouge2: 1.1881
- Train Rougel: 8.8048
- Train Rougelsum: 8.7164
- Train Gen Len: 11.8812
- Epoch: 22
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch |
|:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:|
| 3.9587 | 1.9327 | 2.7783 | 0.2200 | 2.7524 | 2.7558 | 11.6436 | 0 |
| 1.8568 | 1.4440 | 6.6832 | 1.3201 | 6.6007 | 6.4769 | 11.7376 | 1 |
| 1.5929 | 1.2365 | 6.2235 | 1.0891 | 6.2235 | 6.2235 | 11.6089 | 2 |
| 1.3718 | 1.0833 | 7.7086 | 1.5842 | 7.4965 | 7.4965 | 11.9406 | 3 |
| 1.0395 | 0.9417 | 7.4257 | 1.8812 | 7.4257 | 7.4022 | 11.9703 | 4 |
| 0.8993 | 0.8573 | 8.5337 | 1.8812 | 8.4394 | 8.4158 | 11.9059 | 5 |
| 0.7896 | 0.7923 | 8.6987 | 1.7822 | 8.6987 | 8.6987 | 11.9851 | 6 |
| 0.7050 | 0.7375 | 8.4866 | 1.2871 | 8.4512 | 8.4512 | 11.9307 | 7 |
| 0.6377 | 0.7065 | 8.4866 | 1.2871 | 8.4512 | 8.4512 | 11.9158 | 8 |
| 0.5803 | 0.6809 | 8.4866 | 1.2871 | 8.4512 | 8.4512 | 12.0 | 9 |
| 0.5351 | 0.6758 | 8.4866 | 1.2871 | 8.4512 | 8.4512 | 11.9802 | 10 |
| 0.4957 | 0.6585 | 8.3274 | 1.1881 | 8.2921 | 8.2390 | 11.9653 | 11 |
| 0.4498 | 0.6436 | 8.4866 | 1.2871 | 8.4512 | 8.4512 | 11.9752 | 12 |
| 0.4093 | 0.6456 | 8.4866 | 1.2871 | 8.4512 | 8.4512 | 11.9406 | 13 |
| 0.3752 | 0.6300 | 8.3628 | 0.8416 | 8.2508 | 8.2390 | 11.9505 | 14 |
| 0.3427 | 0.6404 | 8.3628 | 0.8416 | 8.2508 | 8.2390 | 11.9604 | 15 |
| 0.3113 | 0.6443 | 8.6987 | 0.5941 | 8.5809 | 8.5868 | 11.9109 | 16 |
| 0.2826 | 0.6459 | 8.6987 | 0.5941 | 8.5809 | 8.5868 | 11.9406 | 17 |
| 0.2565 | 0.6555 | 8.6987 | 0.5941 | 8.5809 | 8.5868 | 11.9455 | 18 |
| 0.2347 | 0.6815 | 8.8402 | 1.1881 | 8.8048 | 8.7164 | 11.8911 | 19 |
| 0.2141 | 0.6884 | 8.6987 | 0.5941 | 8.5809 | 8.5868 | 11.8911 | 20 |
| 0.1942 | 0.7286 | 8.8402 | 1.1881 | 8.8048 | 8.7164 | 11.9307 | 21 |
| 0.1781 | 0.7498 | 8.8402 | 1.1881 | 8.8048 | 8.7164 | 11.8812 | 22 |
### Framework versions
- Transformers 4.41.2
- TensorFlow 2.15.0
- Datasets 2.20.0
- Tokenizers 0.19.1
|