Waxfashion StyleGAN 🎨

This is a StyleGAN2 model trained to generate African Wax Pattern fashion designs.

Model Details

  • Model Type: StyleGAN2
  • Dataset: paceailab/AfricanWaxPatterns_2KDataset
  • Input: Random seed (latent vector)
  • Output: 512x512 wax pattern images

Usage πŸš€

You can use this model in your projects with:

!git clone https://github.com/researchpace/waxfashion.git
from huggingface_hub import hf_hub_download
import torch
import legacy
import dnnlib
import sys
sys.path.append('/content/waxfashion/stylegan2-ada-pytorch')

# Load model
model_path = hf_hub_download("paceailab/Waxfashion_StyleGAN", "selected_models/styleGAN2ada_Africanwax.pkl")

# Load the pre-trained StyleGAN2 model
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
with dnnlib.util.open_url(model_path) as f:
    G = legacy.load_network_pkl(f)['G_ema'].to(device)  # Load the generator

# Generate and display image
import numpy as np
import PIL.Image

def generate_image(seed=42):
    z = torch.from_numpy(np.random.RandomState(seed).randn(1, G.z_dim)).to(device)
    img = G(z, None)  # Generate image
    img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)[0].cpu().numpy()
    return PIL.Image.fromarray(img)

image = generate_image(seed=100)
image.show()
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.