layoutlm-Synthetic-only

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9766
  • Eader: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 57}
  • Nswer: {'precision': 0.07159353348729793, 'recall': 0.2198581560283688, 'f1': 0.10801393728222997, 'number': 141}
  • Uestion: {'precision': 0.1038135593220339, 'recall': 0.30434782608695654, 'f1': 0.15481832543443919, 'number': 161}
  • Overall Precision: 0.0880
  • Overall Recall: 0.2228
  • Overall F1: 0.1262
  • Overall Accuracy: 0.6103

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 9
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Eader Nswer Uestion Overall Precision Overall Recall Overall F1 Overall Accuracy
1.3476 1.0 4 1.3017 {'precision': 0.01, 'recall': 0.05263157894736842, 'f1': 0.016806722689075633, 'number': 57} {'precision': 0.012711864406779662, 'recall': 0.0425531914893617, 'f1': 0.019575856443719414, 'number': 141} {'precision': 0.015772870662460567, 'recall': 0.062111801242236024, 'f1': 0.025157232704402514, 'number': 161} 0.0135 0.0529 0.0215 0.3592
1.0607 2.0 8 1.2217 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 57} {'precision': 0.015384615384615385, 'recall': 0.02127659574468085, 'f1': 0.017857142857142856, 'number': 141} {'precision': 0.010050251256281407, 'recall': 0.012422360248447204, 'f1': 0.011111111111111113, 'number': 161} 0.0127 0.0139 0.0133 0.3607
0.8532 3.0 12 1.1632 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 57} {'precision': 0.034375, 'recall': 0.07801418439716312, 'f1': 0.047722342733188726, 'number': 141} {'precision': 0.021671826625386997, 'recall': 0.043478260869565216, 'f1': 0.02892561983471074, 'number': 161} 0.0280 0.0501 0.0359 0.3963
0.7208 4.0 16 1.1060 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 57} {'precision': 0.02895752895752896, 'recall': 0.10638297872340426, 'f1': 0.04552352048558422, 'number': 141} {'precision': 0.0380952380952381, 'recall': 0.12422360248447205, 'f1': 0.05830903790087465, 'number': 161} 0.0336 0.0975 0.0499 0.4848
0.6082 5.0 20 1.0625 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 57} {'precision': 0.040229885057471264, 'recall': 0.14893617021276595, 'f1': 0.06334841628959276, 'number': 141} {'precision': 0.06554307116104868, 'recall': 0.21739130434782608, 'f1': 0.10071942446043164, 'number': 161} 0.0530 0.1560 0.0792 0.5349
0.4981 6.0 24 1.0294 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 57} {'precision': 0.04573804573804574, 'recall': 0.15602836879432624, 'f1': 0.0707395498392283, 'number': 141} {'precision': 0.08695652173913043, 'recall': 0.2732919254658385, 'f1': 0.13193403298350825, 'number': 161} 0.0667 0.1838 0.0979 0.5663
0.416 7.0 28 1.0031 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 57} {'precision': 0.05908096280087528, 'recall': 0.19148936170212766, 'f1': 0.09030100334448161, 'number': 141} {'precision': 0.09475806451612903, 'recall': 0.2919254658385093, 'f1': 0.1430745814307458, 'number': 161} 0.0774 0.2061 0.1125 0.5868
0.3618 8.0 32 0.9854 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 57} {'precision': 0.06919642857142858, 'recall': 0.2198581560283688, 'f1': 0.10526315789473685, 'number': 141} {'precision': 0.10103092783505155, 'recall': 0.30434782608695654, 'f1': 0.15170278637770898, 'number': 161} 0.0855 0.2228 0.1236 0.6034
0.3256 9.0 36 0.9766 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 57} {'precision': 0.07159353348729793, 'recall': 0.2198581560283688, 'f1': 0.10801393728222997, 'number': 141} {'precision': 0.1038135593220339, 'recall': 0.30434782608695654, 'f1': 0.15481832543443919, 'number': 161} 0.0880 0.2228 0.1262 0.6103

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
29
Safetensors
Model size
113M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for pabloma09/layoutlm-Synthetic-only

Finetuned
(162)
this model