File size: 4,306 Bytes
895a899 3a31d34 895a899 543e4a6 895a899 3a31d34 895a899 3a31d34 895a899 3a31d34 895a899 3a31d34 895a899 3a31d34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
---
license: apache-2.0
tags:
- generated_from_trainer
- siglip
metrics:
- accuracy
- f1
base_model: google/siglip-base-patch16-512
model-index:
- name: siglip-tagger-test-2
results: []
pipeline_tag: image-classification
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# siglip-tagger-test-2
This model is a fine-tuned version of [google/siglip-base-patch16-512](https://huggingface.co/google/siglip-base-patch16-512) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 364.7850
- Accuracy: 0.2539
- F1: 0.9967
## Model description
This model is an experimental model that predicts danbooru tags of images.
## Example
```py
from PIL import Image
import torch
from transformers import (
AutoModelForImageClassification,
AutoImageProcessor,
)
import numpy as np
MODEL_NAME = "p1atdev/siglip-tagger-test-2"
model = AutoModelForImageClassification.from_pretrained(
MODEL_NAME, torch_dtype=torch.bfloat16, trust_remote_code=True
)
model.eval()
processor = AutoImageProcessor.from_pretrained(MODEL_NAME)
image = Image.open("sample.jpg") # load your image
inputs = processor(image, return_tensors="pt").to(model.device, model.dtype)
logits = model(**inputs).logits.detach().cpu().float()[0]
logits = np.clip(logits, 0.0, 1.0)
results = {
model.config.id2label[i]: logit for i, logit in enumerate(logits) if logit > 0
}
results = sorted(results.items(), key=lambda x: x[1], reverse=True)
for tag, score in results:
print(f"{tag}: {score*100:.2f}%")
# 1girl: 100.00%
# outdoors: 100.00%
# sky: 100.00%
# solo: 100.00%
# school uniform: 96.88%
# skirt: 92.97%
# day: 89.06%
# ...
```
## Intended uses & limitations
This model is for research use only and is not recommended for production.
Please use wd-v1-4-tagger series by SmilingWolf:
- [SmilingWolf/wd-v1-4-moat-tagger-v2](https://huggingface.co/SmilingWolf/wd-v1-4-moat-tagger-v2)
- [SmilingWolf/wd-v1-4-swinv2-tagger-v2](https://huggingface.co/SmilingWolf/wd-v1-4-swinv2-tagger-v2)
etc.
## Training and evaluation data
High quality 5000 images from danbooru. They were shulled and split into train:eval at 4500:500.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 1496.9876 | 1.0 | 141 | 691.3267 | 0.1242 | 0.9957 |
| 860.0218 | 2.0 | 282 | 433.5286 | 0.1626 | 0.9965 |
| 775.4277 | 3.0 | 423 | 409.0374 | 0.1827 | 0.9966 |
| 697.2465 | 4.0 | 564 | 396.5604 | 0.2025 | 0.9966 |
| 582.6023 | 5.0 | 705 | 388.3294 | 0.2065 | 0.9966 |
| 617.5087 | 6.0 | 846 | 382.2605 | 0.2213 | 0.9966 |
| 627.533 | 7.0 | 987 | 377.6726 | 0.2269 | 0.9967 |
| 595.4033 | 8.0 | 1128 | 374.3268 | 0.2327 | 0.9967 |
| 593.3854 | 9.0 | 1269 | 371.4181 | 0.2409 | 0.9967 |
| 537.9777 | 10.0 | 1410 | 369.5010 | 0.2421 | 0.9967 |
| 552.3083 | 11.0 | 1551 | 368.0743 | 0.2468 | 0.9967 |
| 570.5438 | 12.0 | 1692 | 366.8302 | 0.2498 | 0.9967 |
| 507.5343 | 13.0 | 1833 | 366.1787 | 0.2499 | 0.9967 |
| 515.5528 | 14.0 | 1974 | 365.5653 | 0.2525 | 0.9967 |
| 458.5096 | 15.0 | 2115 | 365.1838 | 0.2528 | 0.9967 |
| 515.6953 | 16.0 | 2256 | 364.9844 | 0.2535 | 0.9967 |
| 533.7929 | 17.0 | 2397 | 364.8577 | 0.2538 | 0.9967 |
| 520.3728 | 18.0 | 2538 | 364.8066 | 0.2537 | 0.9967 |
| 525.1097 | 19.0 | 2679 | 364.7850 | 0.2539 | 0.9967 |
| 482.0612 | 20.0 | 2820 | 364.7876 | 0.2539 | 0.9967 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.1.2+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0 |